3D Nuclei Segmentation through Deep Learning

Roberto Rojas, Carlos F. Navarro, Gabriel A. Orellana, Carmen Gloria Lemus C., V. Castañeda
{"title":"3D Nuclei Segmentation through Deep Learning","authors":"Roberto Rojas, Carlos F. Navarro, Gabriel A. Orellana, Carmen Gloria Lemus C., V. Castañeda","doi":"10.1109/CAI54212.2023.00137","DOIUrl":null,"url":null,"abstract":"Nowadays, deep-learning has been used successfully to solve difficult problems in fluorescence microscopy field. In this work, we propose a Drosophila 3D Nuclei segmentation based on a pipeline that detects nuclei centers and then segments each detected nucleus individually, using a different 3D U-net for detection and segmentation steps. Our method is among the top-3 performers in the Cell Tracking Challenge segmentation benchmark for Light Sheet Microscopy Drosophila dataset, reaching a final score of 0.827. The proposed methodology: i) allows the utilization of a U-net model to perform a detection task, and ii) requires much fewer training samples than direct segmentation of the entire volume, reducing the manual annotation effort.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, deep-learning has been used successfully to solve difficult problems in fluorescence microscopy field. In this work, we propose a Drosophila 3D Nuclei segmentation based on a pipeline that detects nuclei centers and then segments each detected nucleus individually, using a different 3D U-net for detection and segmentation steps. Our method is among the top-3 performers in the Cell Tracking Challenge segmentation benchmark for Light Sheet Microscopy Drosophila dataset, reaching a final score of 0.827. The proposed methodology: i) allows the utilization of a U-net model to perform a detection task, and ii) requires much fewer training samples than direct segmentation of the entire volume, reducing the manual annotation effort.
基于深度学习的三维核分割
目前,深度学习已经成功地应用于解决荧光显微镜领域的难题。在这项工作中,我们提出了一种基于管道的果蝇3D细胞核分割方法,该管道检测细胞核中心,然后使用不同的3D U-net进行检测和分割步骤,将每个检测到的细胞核单独分割。我们的方法在Light Sheet Microscopy果蝇数据集的Cell Tracking Challenge分割基准中名列前三,最终得分为0.827。所提出的方法:i)允许使用U-net模型来执行检测任务,ii)比直接分割整个卷所需的训练样本少得多,从而减少了手动注释的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信