Handwritten zip code recognition with multilayer networks

Yann LeCun, O. Matan, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. D. Jacket, H. Baird
{"title":"Handwritten zip code recognition with multilayer networks","authors":"Yann LeCun, O. Matan, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. D. Jacket, H. Baird","doi":"10.1109/ICPR.1990.119325","DOIUrl":null,"url":null,"abstract":"An application of back-propagation networks to handwritten zip code recognition is presented. Minimal preprocessing of the data is required, but the architecture of the network is highly constrained and specifically designed for the task. The input of the network consists of size-normalized images of isolated digits. The performance on zip code digits provided by the US Postal Service is 92% recognition, 1% substitution, and 7% rejects. Structured neural networks can be viewed as statistical methods with structure which bridge the gap between purely statistical and purely structural methods.<<ETX>>","PeriodicalId":135937,"journal":{"name":"[1990] Proceedings. 10th International Conference on Pattern Recognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"213","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. 10th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1990.119325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 213

Abstract

An application of back-propagation networks to handwritten zip code recognition is presented. Minimal preprocessing of the data is required, but the architecture of the network is highly constrained and specifically designed for the task. The input of the network consists of size-normalized images of isolated digits. The performance on zip code digits provided by the US Postal Service is 92% recognition, 1% substitution, and 7% rejects. Structured neural networks can be viewed as statistical methods with structure which bridge the gap between purely statistical and purely structural methods.<>
手写邮政编码识别与多层网络
介绍了反向传播网络在手写体邮编识别中的应用。需要对数据进行最少的预处理,但是网络的体系结构是高度受限的,并且是专门为该任务设计的。网络的输入由大小归一化的孤立数字图像组成。美国邮政服务提供的邮政编码数字的性能是92%的识别,1%的替换和7%的拒绝。结构化神经网络可以看作是具有结构的统计方法,它弥补了纯统计方法和纯结构方法之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信