{"title":"An End-Effector for Pinch and Slide Unfolding Using a Protruding Passive Rotation Mechanism","authors":"Shunji Fujihara, Kimitoshi Yamazaki, Tetsuyou Watanabe","doi":"10.1109/ICMA54519.2022.9856216","DOIUrl":null,"url":null,"abstract":"In this study, we focus on pinch and slide unfolding, an effective method for unfolding clothes. However, pinch and slide unfolding exhibits its drawbacks. For instance, when a cloth is unfolded, gravity pulls it downward, causing the cloth to fall through the gap between the fingers. Hence, this paper proposes a novel end-effector used for cloth manipulation to improve the success rate of unfolding. Our approach demonstrates two main characteristics: (1) By devising an appropriate finger shape and gripping motion, the hem of clothes can be prevented from being pinched in a bent state; (2) A protrusion is attached to the finger pad that can be passively rotated by a bearing, enabling continuous capturing of minute irregularities on the hem of clothes during pinch and slide unfolding. The proposed end-effector was constructed and attached to a robot arm. The end-effector’s effectiveness was confirmed through experiments of unfolding squared cloth sheets.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we focus on pinch and slide unfolding, an effective method for unfolding clothes. However, pinch and slide unfolding exhibits its drawbacks. For instance, when a cloth is unfolded, gravity pulls it downward, causing the cloth to fall through the gap between the fingers. Hence, this paper proposes a novel end-effector used for cloth manipulation to improve the success rate of unfolding. Our approach demonstrates two main characteristics: (1) By devising an appropriate finger shape and gripping motion, the hem of clothes can be prevented from being pinched in a bent state; (2) A protrusion is attached to the finger pad that can be passively rotated by a bearing, enabling continuous capturing of minute irregularities on the hem of clothes during pinch and slide unfolding. The proposed end-effector was constructed and attached to a robot arm. The end-effector’s effectiveness was confirmed through experiments of unfolding squared cloth sheets.