A graph-anisotropic approach to 3-D data segmentation

R. Chaine, S. Bouakaz, D. Vandorpe
{"title":"A graph-anisotropic approach to 3-D data segmentation","authors":"R. Chaine, S. Bouakaz, D. Vandorpe","doi":"10.1109/SIBGRA.1998.722759","DOIUrl":null,"url":null,"abstract":"In this paper, we present a general framework for the segmentation of surfaces represented by 3-D scattered data. The method we present is based on a contextual anisotropic diffusion scheme. Contextual information at each data point involves the selection of optimal directions, locally representing the shape. Over the set of points, graph based representations are well adapted to gather this kind of information in a single compact description. Thus, we introduce two structures respectively denoted minimal and maximal escarpment trees. Our segmentation process is tightly bound to these structures. It proceeds in two stages. The first stage corresponds to the exploration of the maximal escarpment tree and the detection of atomic regions. Then, the second stage permits the progressive merging of emergent regions over the minimal escarpment tree, subject to implicit conditions on the presence of singularities. The sequence of these two treatments has proven to be effective, it corresponds to a new an original approach of segmentation.","PeriodicalId":282177,"journal":{"name":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.1998.722759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a general framework for the segmentation of surfaces represented by 3-D scattered data. The method we present is based on a contextual anisotropic diffusion scheme. Contextual information at each data point involves the selection of optimal directions, locally representing the shape. Over the set of points, graph based representations are well adapted to gather this kind of information in a single compact description. Thus, we introduce two structures respectively denoted minimal and maximal escarpment trees. Our segmentation process is tightly bound to these structures. It proceeds in two stages. The first stage corresponds to the exploration of the maximal escarpment tree and the detection of atomic regions. Then, the second stage permits the progressive merging of emergent regions over the minimal escarpment tree, subject to implicit conditions on the presence of singularities. The sequence of these two treatments has proven to be effective, it corresponds to a new an original approach of segmentation.
三维数据分割的图各向异性方法
在本文中,我们提出了一个由三维离散数据表示的曲面分割的一般框架。我们提出的方法是基于上下文各向异性扩散方案。每个数据点的上下文信息包括选择最优方向,局部表示形状。在点的集合上,基于图的表示很好地适应于在单个紧凑的描述中收集这类信息。因此,我们引入了两种结构,分别表示为最小和最大悬崖树。我们的分割过程与这些结构紧密相连。它分两个阶段进行。第一个阶段对应于最大悬崖树的探索和原子区域的检测。然后,第二阶段允许在最小悬崖树上逐步合并紧急区域,服从于奇点存在的隐式条件。这两种处理的先后顺序已被证明是有效的,它对应于一种新的原始分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信