Predicting motifs in human and mouse genes by using Probabilistic Suffix Trees

K. Yıldız, M. Sert
{"title":"Predicting motifs in human and mouse genes by using Probabilistic Suffix Trees","authors":"K. Yıldız, M. Sert","doi":"10.1109/BIYOMUT.2010.5479737","DOIUrl":null,"url":null,"abstract":"The identification of regulatory elements (motifs) is a challenging task in mollecular biology. An important challenge in this study is to identify regulatory elements (motifs), notably the binding sites in Deocsiribonucleic Acid (DNA) for transcription factors. Based on this motivation we propose a method for motif prediction of mouse and human genes by using Probabilistic Suffix Tree (PST). Experimental results are evaluated comparatively by thirteen distinct motif prediction tools. Our results show that, the proposed method gives a better recognition rate than the compared motif prediction tools, where the recognition rate is nucleotide level sensitivity (nSn).","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of regulatory elements (motifs) is a challenging task in mollecular biology. An important challenge in this study is to identify regulatory elements (motifs), notably the binding sites in Deocsiribonucleic Acid (DNA) for transcription factors. Based on this motivation we propose a method for motif prediction of mouse and human genes by using Probabilistic Suffix Tree (PST). Experimental results are evaluated comparatively by thirteen distinct motif prediction tools. Our results show that, the proposed method gives a better recognition rate than the compared motif prediction tools, where the recognition rate is nucleotide level sensitivity (nSn).
利用概率后缀树预测人类和小鼠基因的基序
调控元件(基序)的鉴定是分子生物学中一项具有挑战性的任务。本研究的一个重要挑战是确定调控元件(基序),特别是转录因子在脱氧核糖核酸(DNA)中的结合位点。基于这一动机,我们提出了一种基于概率后缀树(Probabilistic Suffix Tree, PST)的小鼠和人类基因基序预测方法。用13种不同的基序预测工具对实验结果进行了比较评价。研究结果表明,该方法的识别率高于目前比较的基序预测工具,其识别率为核苷酸水平灵敏度(nSn)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信