Weighted Pooling RoBERTa for Effective Text Emotion Detection

Meenu Mathew, J. Prakash
{"title":"Weighted Pooling RoBERTa for Effective Text Emotion Detection","authors":"Meenu Mathew, J. Prakash","doi":"10.1109/I2CT57861.2023.10126396","DOIUrl":null,"url":null,"abstract":"Textual emotion detection is a classification problem that assigns different emotions to a given text input. It reveals the writer’s mental state. Its diversity and uncertainty make it a challenging task. The existing methods in machine learning can be used for emotion detection; however, it fails in processing very long passages. In this work, we employ weighted pooling pretrained RoBERTa model for effective textual emotion detection. To perform experiments, we use two data sets, ISEAR and tweets, with 7516 and 21048 records, respectively. Precision, recall, F1-score, and classification accuracy are used to assess the models. Experimental results indicate that the weighted pooling RoBERTa model outperforms the deep learning models on both datasets with significant improvement in accuracy.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Textual emotion detection is a classification problem that assigns different emotions to a given text input. It reveals the writer’s mental state. Its diversity and uncertainty make it a challenging task. The existing methods in machine learning can be used for emotion detection; however, it fails in processing very long passages. In this work, we employ weighted pooling pretrained RoBERTa model for effective textual emotion detection. To perform experiments, we use two data sets, ISEAR and tweets, with 7516 and 21048 records, respectively. Precision, recall, F1-score, and classification accuracy are used to assess the models. Experimental results indicate that the weighted pooling RoBERTa model outperforms the deep learning models on both datasets with significant improvement in accuracy.
有效文本情感检测的加权池RoBERTa
文本情感检测是一个分类问题,它将不同的情感分配给给定的文本输入。它揭示了作者的精神状态。它的多样性和不确定性使它成为一项具有挑战性的任务。现有的机器学习方法可以用于情绪检测;然而,它不能处理很长的段落。在这项工作中,我们使用加权池预训练RoBERTa模型进行有效的文本情感检测。为了进行实验,我们使用两个数据集,ISEAR和tweets,分别有7516条和21048条记录。精密度、召回率、f1分数和分类精度被用来评估模型。实验结果表明,加权池化RoBERTa模型在两个数据集上都优于深度学习模型,准确率显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信