Image Retrieval Algorithm Based on Deep Learning

Yidan Li, Mingjie Wang
{"title":"Image Retrieval Algorithm Based on Deep Learning","authors":"Yidan Li, Mingjie Wang","doi":"10.1145/3406971.3406984","DOIUrl":null,"url":null,"abstract":"The traditional hashing method of manual feature extraction uses image tags as the supervision information to obtain the loss function, and the retrieval accuracy is low and the effect is not good. This paper proposes a new deep learning image retrieval algorithm based on the traditional supervised hash algorithm. The algorithm integrates feature learning and hash code learning in an end-to-end framework, and converts multi-labels of images into binary paired labels. Based on the AlexNet framework, a feature learning module is established, and a pair of loss function and a balanced hash code loss function are combined to generate a loss function for network training. After the experimental test of the CIFAR-10 data set, the method of this paper greatly improves the average accuracy of image retrieval.","PeriodicalId":111905,"journal":{"name":"Proceedings of the 4th International Conference on Graphics and Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406971.3406984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional hashing method of manual feature extraction uses image tags as the supervision information to obtain the loss function, and the retrieval accuracy is low and the effect is not good. This paper proposes a new deep learning image retrieval algorithm based on the traditional supervised hash algorithm. The algorithm integrates feature learning and hash code learning in an end-to-end framework, and converts multi-labels of images into binary paired labels. Based on the AlexNet framework, a feature learning module is established, and a pair of loss function and a balanced hash code loss function are combined to generate a loss function for network training. After the experimental test of the CIFAR-10 data set, the method of this paper greatly improves the average accuracy of image retrieval.
基于深度学习的图像检索算法
传统的手工特征提取的哈希方法是利用图像标签作为监督信息来获取损失函数,检索精度低,效果不佳。在传统监督哈希算法的基础上,提出了一种新的深度学习图像检索算法。该算法将特征学习和哈希码学习集成在一个端到端框架中,将图像的多个标签转换为二进制配对标签。基于AlexNet框架,建立特征学习模块,结合一对损失函数和一个平衡哈希码损失函数生成用于网络训练的损失函数。经过对CIFAR-10数据集的实验测试,本文方法大大提高了图像检索的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信