Phase Properties of the Generalised Zames- Falb Multipliers

W. Heath, J. Carrasco
{"title":"Phase Properties of the Generalised Zames- Falb Multipliers","authors":"W. Heath, J. Carrasco","doi":"10.1109/CONTROL.2018.8516879","DOIUrl":null,"url":null,"abstract":"The Zames- Falb multipliers are a classical tool in the analysis of Lure systems. They are the widest known class of multipliers (up to phase equivalence) that preserve the positivity of memoryless monotone and bounded nonlinearities. They can be used to prove that the Kalman Conjecture is true for third order systems. This paper brings together two separate and recent developments in the area. On the one hand it is possible to derive generalised multipliers applicable to nonlinearities that need be neither memoryless nor monotone, but that can be bounded by input-output maps with such properties. On the other, it is possible to derive analytic constraints on the phase properties of Zames- Falb multipliers and to interpret these in terms of the Kalman Conjecture. We derive and discuss such analytic phase restrictions for the generalised Zames- Falb multipliers. We discuss the implications for nonlinearities with partial symmetry and for Lure systems with persistent disturbances.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Zames- Falb multipliers are a classical tool in the analysis of Lure systems. They are the widest known class of multipliers (up to phase equivalence) that preserve the positivity of memoryless monotone and bounded nonlinearities. They can be used to prove that the Kalman Conjecture is true for third order systems. This paper brings together two separate and recent developments in the area. On the one hand it is possible to derive generalised multipliers applicable to nonlinearities that need be neither memoryless nor monotone, but that can be bounded by input-output maps with such properties. On the other, it is possible to derive analytic constraints on the phase properties of Zames- Falb multipliers and to interpret these in terms of the Kalman Conjecture. We derive and discuss such analytic phase restrictions for the generalised Zames- Falb multipliers. We discuss the implications for nonlinearities with partial symmetry and for Lure systems with persistent disturbances.
广义Zames- Falb乘法器的相位特性
Zames- Falb乘数是分析Lure系统的经典工具。它们是已知最广泛的一类乘法器(直到相位等效),可以保持无记忆单调和有界非线性的正性。它们可以用来证明卡尔曼猜想对于三阶系统是成立的。本文汇集了该领域两个独立的最新发展。一方面,有可能推导出适用于非线性的广义乘法器,这些非线性既不需要无记忆也不需要单调,但可以由具有这些性质的输入输出映射限定。另一方面,可以推导出Zames- Falb乘法器相位特性的解析约束,并用卡尔曼猜想来解释这些约束。我们推导并讨论了广义Zames- Falb乘子的解析相位限制。我们讨论了部分对称非线性和具有持续扰动的Lure系统的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信