Fault Isolation Using Extrinsic Curvature of Nonlinear Fault Models

A. Vemuri, K. Subbarao
{"title":"Fault Isolation Using Extrinsic Curvature of Nonlinear Fault Models","authors":"A. Vemuri, K. Subbarao","doi":"10.1109/ICARCV.2006.345315","DOIUrl":null,"url":null,"abstract":"This paper presents an online fault isolation methodology for identifying faulty components in a dynamical system. It is hypothesized that faults in a dynamical system can be suitably represented via nonlinear functions. The isolation scheme, which is implemented online, relies on adaptive nonlinear estimates of these nonlinear fault functions based on the system input output data. The nonlinear fault estimation is achieved using a radial basis function neural network (RBFNN) architecture while the fault isolation is accomplished using extrinsic curvature of the learned RBFNN model. A simple simulation example is presented to illustrate the concept","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an online fault isolation methodology for identifying faulty components in a dynamical system. It is hypothesized that faults in a dynamical system can be suitably represented via nonlinear functions. The isolation scheme, which is implemented online, relies on adaptive nonlinear estimates of these nonlinear fault functions based on the system input output data. The nonlinear fault estimation is achieved using a radial basis function neural network (RBFNN) architecture while the fault isolation is accomplished using extrinsic curvature of the learned RBFNN model. A simple simulation example is presented to illustrate the concept
利用非线性故障模型的外部曲率进行故障隔离
本文提出了一种在线故障隔离方法,用于动态系统故障部件的识别。假设动力系统中的故障可以用非线性函数恰当地表示。在线实现的隔离方案依赖于基于系统输入输出数据的非线性故障函数的自适应非线性估计。采用径向基函数神经网络(RBFNN)结构实现非线性故障估计,并利用学习到的RBFNN模型的外部曲率实现故障隔离。给出了一个简单的仿真例子来说明这个概念
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信