Combined quantum particle swarm optimization algorithm for multi-objective nutritional diet decision making

Youbo Lv
{"title":"Combined quantum particle swarm optimization algorithm for multi-objective nutritional diet decision making","authors":"Youbo Lv","doi":"10.1109/ICCSIT.2009.5234580","DOIUrl":null,"url":null,"abstract":"A assembled method based on quantum particle swarm optimization (QPSO) algorithm combined with Bayesian networks (BN) is proposed to solve complex multi-objective nutritional diet decision making problem. To realize nutritional diet decision optimization for patients, BN model for dealing with associative relationship between diseases and diets is set up to compute and update the edibility of every food in database. QPSO algorithm is selected as the core optimization algorithm to avoid being trapped in a local optimum. Actual experimental results show that such combined method is a feasible and effective approach for actual nutritional diet decision making problem.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A assembled method based on quantum particle swarm optimization (QPSO) algorithm combined with Bayesian networks (BN) is proposed to solve complex multi-objective nutritional diet decision making problem. To realize nutritional diet decision optimization for patients, BN model for dealing with associative relationship between diseases and diets is set up to compute and update the edibility of every food in database. QPSO algorithm is selected as the core optimization algorithm to avoid being trapped in a local optimum. Actual experimental results show that such combined method is a feasible and effective approach for actual nutritional diet decision making problem.
多目标营养膳食决策的组合量子粒子群优化算法
提出了一种基于量子粒子群优化(QPSO)算法和贝叶斯网络(BN)的组合方法来解决复杂的多目标营养膳食决策问题。为了实现患者的营养饮食决策优化,建立了处理疾病与饮食关联关系的BN模型,计算并更新数据库中每种食物的可食性。为了避免陷入局部最优,选择QPSO算法作为核心优化算法。实际实验结果表明,该组合方法是解决实际营养膳食决策问题的一种可行有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信