M. Osama, Serban D. Porumbescu, John Douglas Owens
{"title":"Essentials of Parallel Graph Analytics","authors":"M. Osama, Serban D. Porumbescu, John Douglas Owens","doi":"10.1109/IPDPSW55747.2022.00061","DOIUrl":null,"url":null,"abstract":"We identify the graph data structure, frontiers, operators, an iterative loop structure, and convergence conditions as essential components of graph analytics systems based on the native-graph approach. Using these essential components, we propose an abstraction that captures all the significant programming models within graph analytics, such as bulk-synchronous, asynchronous, shared-memory, message-passing, and push vs. pull traversals. Finally, we demonstrate the power of our abstraction with an elegant modern C++ implementation of single-source shortest path and its required components.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We identify the graph data structure, frontiers, operators, an iterative loop structure, and convergence conditions as essential components of graph analytics systems based on the native-graph approach. Using these essential components, we propose an abstraction that captures all the significant programming models within graph analytics, such as bulk-synchronous, asynchronous, shared-memory, message-passing, and push vs. pull traversals. Finally, we demonstrate the power of our abstraction with an elegant modern C++ implementation of single-source shortest path and its required components.