Implementation of Harris Hawk Optimizer for detection of Fault in PV module

Parveen Kumar, Manish Kumar, A.K. Bansal
{"title":"Implementation of Harris Hawk Optimizer for detection of Fault in PV module","authors":"Parveen Kumar, Manish Kumar, A.K. Bansal","doi":"10.1109/SSTEPS57475.2022.00027","DOIUrl":null,"url":null,"abstract":"Uncleared electric faults in photovoltaic (PV) arrays can lead to quality degradation, power outages, and fire dangers, among other things. This paper proposed Harris Hawk Optimization (HHO) method for detecting the faults in the solar panel with less number of generations. Moreover, the designed HHO technique is faster fault detection process as compared to other existing methods such as Fast Fourier Transform (FFT), and Convolutional Neural Network (CNN).","PeriodicalId":289933,"journal":{"name":"2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSTEPS57475.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncleared electric faults in photovoltaic (PV) arrays can lead to quality degradation, power outages, and fire dangers, among other things. This paper proposed Harris Hawk Optimization (HHO) method for detecting the faults in the solar panel with less number of generations. Moreover, the designed HHO technique is faster fault detection process as compared to other existing methods such as Fast Fourier Transform (FFT), and Convolutional Neural Network (CNN).
Harris Hawk优化器在光伏组件故障检测中的实现
光伏(PV)阵列中未清除的电气故障可能导致质量下降、停电和火灾危险等。提出了一种基于Harris Hawk优化(HHO)的少代太阳能板故障检测方法。此外,与现有的快速傅立叶变换(FFT)和卷积神经网络(CNN)等方法相比,所设计的HHO技术具有更快的故障检测过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信