Processing evaluations of an automated high-throughput system for interconnecting crystalline silicon solar cells

M. Nowlan, S. Hogan, J. Patterson, S. Sutherland, J. Murach, W. Breen, G. Darkazalli
{"title":"Processing evaluations of an automated high-throughput system for interconnecting crystalline silicon solar cells","authors":"M. Nowlan, S. Hogan, J. Patterson, S. Sutherland, J. Murach, W. Breen, G. Darkazalli","doi":"10.1109/PVSC.1996.564379","DOIUrl":null,"url":null,"abstract":"The objective of this work is to reduce the cost and improve the quality of terrestrial photovoltaic (PV) modules by developing automated high-throughput (5 MW/yr) processes for interconnecting crystalline silicon solar cells. A new automated processing system was developed for high-throughput, high-yield solar cell interconnection. The results of extensive processing evaluations with a range of different commercially produced cells are reported. Process yields typically exceeded 98%. No degradation in cell performance was observed. Modules made from cell strings fabricated with the new assembly system were subjected to accelerated environmental testing per IEC 1215 and IEEE 1262 standards. Testing consisted of thermal cycling, thermal and humidity-freeze cycling, and damp heat soaking. All modules passed these qualification tests, with an average power loss of only 2.3%.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.564379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The objective of this work is to reduce the cost and improve the quality of terrestrial photovoltaic (PV) modules by developing automated high-throughput (5 MW/yr) processes for interconnecting crystalline silicon solar cells. A new automated processing system was developed for high-throughput, high-yield solar cell interconnection. The results of extensive processing evaluations with a range of different commercially produced cells are reported. Process yields typically exceeded 98%. No degradation in cell performance was observed. Modules made from cell strings fabricated with the new assembly system were subjected to accelerated environmental testing per IEC 1215 and IEEE 1262 standards. Testing consisted of thermal cycling, thermal and humidity-freeze cycling, and damp heat soaking. All modules passed these qualification tests, with an average power loss of only 2.3%.
晶体硅太阳能电池互连自动化高通量系统的工艺评估
这项工作的目的是通过开发用于互连晶体硅太阳能电池的自动化高通量(5兆瓦/年)工艺来降低成本并提高地面光伏(PV)模块的质量。研制了一种新型的高通量、高产能太阳能电池互连自动化处理系统。报告了对一系列不同商业生产的细胞进行广泛处理评估的结果。工艺收率通常超过98%。未观察到细胞性能下降。采用新装配系统制造的电池串制成的模块按照IEC 1215和IEEE 1262标准进行加速环境测试。试验包括热循环、热湿冻结循环和湿热浸泡。所有模块都通过了这些资格测试,平均功率损耗仅为2.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信