Simulating Compressible and Nearly-Incompressible Linear Elasticity Using an Efficient Parallel Scalable Matrix-Free High-Order Finite Element Method

A. Mehraban, Jeremy L. Thompson, Jed Brown, R. Regueiro, Valeria, Barra, H. Tufo
{"title":"Simulating Compressible and Nearly-Incompressible Linear Elasticity Using an Efficient Parallel Scalable Matrix-Free High-Order Finite Element Method","authors":"A. Mehraban, Jeremy L. Thompson, Jed Brown, R. Regueiro, Valeria, Barra, H. Tufo","doi":"10.23967/WCCM-ECCOMAS.2020.302","DOIUrl":null,"url":null,"abstract":". We examine a residual and matrix-free Jacobian formulation of compressible and nearly incompressible ( ν → 0 . 5) displacement-only linear isotropic elasticity with high-order hexahedral finite elements. A matrix-free p -multigrid method is combined with algebraic multigrid on the assembled sparse coarse grid matrix to provide an effective preconditioner. The software is verified with the method of manufactured solutions. We explore convergence to a predetermined L 2 error of 10 − 4 , 10 − 5 and 10 − 6 for the compressible case and 10 − 4 , 10 − 5 for the nearly-incompressible cases, as the Poisson’s ratio approaches 0.5, based upon grid resolution and polynomial order. We compare our results against results obtained from C3D20H mixed/hybrid element available in the commercial finite element software ABAQUS that is quadratic in displacement and linear in pressure. We determine, for the same problem size, that our matrix-free approach for displacement-only implementation is faster and more efficient","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We examine a residual and matrix-free Jacobian formulation of compressible and nearly incompressible ( ν → 0 . 5) displacement-only linear isotropic elasticity with high-order hexahedral finite elements. A matrix-free p -multigrid method is combined with algebraic multigrid on the assembled sparse coarse grid matrix to provide an effective preconditioner. The software is verified with the method of manufactured solutions. We explore convergence to a predetermined L 2 error of 10 − 4 , 10 − 5 and 10 − 6 for the compressible case and 10 − 4 , 10 − 5 for the nearly-incompressible cases, as the Poisson’s ratio approaches 0.5, based upon grid resolution and polynomial order. We compare our results against results obtained from C3D20H mixed/hybrid element available in the commercial finite element software ABAQUS that is quadratic in displacement and linear in pressure. We determine, for the same problem size, that our matrix-free approach for displacement-only implementation is faster and more efficient
用一种高效的并行可伸缩无矩阵高阶有限元法模拟可压缩和近不可压缩线弹性
. 我们研究了可压缩和近似不可压缩(ν→0)的残差和无矩阵雅可比公式。5)基于高阶六面体有限元的纯位移线性各向同性弹性。将无矩阵p -多重网格法与集合稀疏粗网格矩阵上的代数多重网格相结合,提供了有效的预条件。用制造溶液的方法对软件进行了验证。当泊松比接近0.5时,基于网格分辨率和多项式阶,我们探索了收敛到预定的l2误差为10−4、10−5和10−6的可压缩情况和10−4、10−5的几乎不可压缩情况。我们将我们的结果与商用有限元软件ABAQUS中C3D20H混合/混合单元的结果进行了比较,后者是二次位移和线性压力。我们确定,对于相同的问题规模,我们的无矩阵方法的位移只实现更快,更有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信