On the implementation of a quasi-Newton interior-point method for PDE-constrained optimization using finite element discretizations

C. Petra, M. Troya, N. Petra, Youngsoo Choi, G. Oxberry, D. Tortorelli
{"title":"On the implementation of a quasi-Newton interior-point method for PDE-constrained optimization using finite element discretizations","authors":"C. Petra, M. Troya, N. Petra, Youngsoo Choi, G. Oxberry, D. Tortorelli","doi":"10.1080/10556788.2022.2117354","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a quasi-Newton interior-point method appropriate for optimization problems with pointwise inequality constraints in Hilbert function spaces. Among others, our methodology applies to optimization problems constrained by partial differential equations (PDEs) that are posed in a reduced-space formulation and have bounds or inequality constraints on the optimized parameter function. We first introduce the formalization of an infinite-dimensional quasi-Newton interior-point algorithm using secant BFGS updates and then proceed to derive a discretized interior-point method capable of working with a wide range of finite element discretization schemes. We also discuss and address mathematical and software interface issues that are pervasive when existing off-the-shelf PDE solvers are to be used with off-the-shelf nonlinear programming solvers. Finally, we elaborate on the numerical and parallel computing strengths and limitations of the proposed methodology on several classes of PDE-constrained problems.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2117354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT We present a quasi-Newton interior-point method appropriate for optimization problems with pointwise inequality constraints in Hilbert function spaces. Among others, our methodology applies to optimization problems constrained by partial differential equations (PDEs) that are posed in a reduced-space formulation and have bounds or inequality constraints on the optimized parameter function. We first introduce the formalization of an infinite-dimensional quasi-Newton interior-point algorithm using secant BFGS updates and then proceed to derive a discretized interior-point method capable of working with a wide range of finite element discretization schemes. We also discuss and address mathematical and software interface issues that are pervasive when existing off-the-shelf PDE solvers are to be used with off-the-shelf nonlinear programming solvers. Finally, we elaborate on the numerical and parallel computing strengths and limitations of the proposed methodology on several classes of PDE-constrained problems.
基于有限元离散化的准牛顿内点法求解pde约束优化问题
摘要提出了一种适用于Hilbert函数空间中具有点向不等式约束的优化问题的拟牛顿内点法。其中,我们的方法适用于由偏微分方程(PDEs)约束的优化问题,这些偏微分方程(PDEs)以约化空间形式提出,并且对优化参数函数具有边界或不等式约束。我们首先介绍了一种使用割线BFGS更新的无限维准牛顿内点算法的形式化,然后推导了一种能够与广泛的有限元离散化方案一起工作的离散化内点方法。我们还讨论并解决了当现有的现成的PDE求解器与现成的非线性规划求解器一起使用时普遍存在的数学和软件接口问题。最后,我们详细阐述了所提出的方法在若干类pde约束问题上的数值和并行计算优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信