{"title":"Influence of facial expression and viewpoint variations on face recognition accuracy by different face recognition algorithms","authors":"M. Phankokkruad, Phichaya Jaturawat","doi":"10.1109/SNPD.2017.8022727","DOIUrl":null,"url":null,"abstract":"Face recognition is a personal identification method using biometrics that is gaining the attention in this research field. The face recognition process can be done without the human and devices interaction, so it can be applied in several applications. In additions, the face recognition systems are typically implemented at different places in unconstrained environments. Hence, the study of the factors that impact the face recognition accuracy is an interesting and challenging topic. In the class attendance checking system using face recognition, there are variations of three factors that possibly affect the accuracy of the system; facial expressions, and face viewpoints. This study intends to compare facial recognition accuracy of three well-known algorithms namely Eigenfaces, Fisherfaces, and LBPH. The experiments conducted in the respects of the variation of facial expressions, and face viewpoints in the actual classroom. The results of the experiment demonstrated that LBPH is the most precise algorithm which achieves 81.67% of accuracy in still-image-based testing. The facial expression that has the most impact on accuracy is the grin, and face viewpoints that affect accuracy are looking down and tilting left, and right respectively. Therefore, LBPH is the most suitable algorithm to apply in a class attendance checking system after considering the accuracy.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Face recognition is a personal identification method using biometrics that is gaining the attention in this research field. The face recognition process can be done without the human and devices interaction, so it can be applied in several applications. In additions, the face recognition systems are typically implemented at different places in unconstrained environments. Hence, the study of the factors that impact the face recognition accuracy is an interesting and challenging topic. In the class attendance checking system using face recognition, there are variations of three factors that possibly affect the accuracy of the system; facial expressions, and face viewpoints. This study intends to compare facial recognition accuracy of three well-known algorithms namely Eigenfaces, Fisherfaces, and LBPH. The experiments conducted in the respects of the variation of facial expressions, and face viewpoints in the actual classroom. The results of the experiment demonstrated that LBPH is the most precise algorithm which achieves 81.67% of accuracy in still-image-based testing. The facial expression that has the most impact on accuracy is the grin, and face viewpoints that affect accuracy are looking down and tilting left, and right respectively. Therefore, LBPH is the most suitable algorithm to apply in a class attendance checking system after considering the accuracy.