Randomly colouring graphs with lower bounds on girth and maximum degree

M. Dyer, A. Frieze
{"title":"Randomly colouring graphs with lower bounds on girth and maximum degree","authors":"M. Dyer, A. Frieze","doi":"10.1109/SFCS.2001.959934","DOIUrl":null,"url":null,"abstract":"We consider the problem of generating a random q-colouring of a graph G=(V, E). We consider the simple Glauber Dynamics chain. We show that if the maximum degree /spl Delta/>c/sub l/ ln n and the girth g>c/sub 2/ ln ln n (n=|V|), then this chain mixes rapidly provided C/sub 1/, C/sub 2/ are sufficiently large, q/A>/spl beta/, where /spl beta//spl ap/1.763 is the root of /spl beta/=e/sup 1//spl beta//. For this class of graphs, this beats the 11/spl Delta//6 bound of E. Vigoda (1999) for general graphs. We extend the result to random graphs.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

We consider the problem of generating a random q-colouring of a graph G=(V, E). We consider the simple Glauber Dynamics chain. We show that if the maximum degree /spl Delta/>c/sub l/ ln n and the girth g>c/sub 2/ ln ln n (n=|V|), then this chain mixes rapidly provided C/sub 1/, C/sub 2/ are sufficiently large, q/A>/spl beta/, where /spl beta//spl ap/1.763 is the root of /spl beta/=e/sup 1//spl beta//. For this class of graphs, this beats the 11/spl Delta//6 bound of E. Vigoda (1999) for general graphs. We extend the result to random graphs.
随机上色图形与下界的周长和最大程度
我们考虑生成图G=(V, E)的随机q-着色问题。我们考虑简单的Glauber动力学链。我们证明,如果最大度/spl δ />c/sub - 1/ ln n和周长g>c/sub - 2/ ln - ln n (n=|V|),则在c/sub - 1/、c/sub - 2/足够大的情况下,q/A>/spl β /,其中/spl β //spl ap/1.763是/spl β /=e/sup 1//spl β //的根。对于这类图,这优于E. Vigoda(1999)对于一般图的11/spl Delta//6界。我们将结果推广到随机图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信