{"title":"Neural Operators for Solving PDEs and Inverse Design","authors":"Anima Anandkumar","doi":"10.1145/3569052.3578911","DOIUrl":null,"url":null,"abstract":"Deep learning surrogate models have shown promise in modeling complex physical phenomena such as photonics, fluid flows, molecular dynamics and material properties. However, standard neural networks assume finite-dimensional inputs and outputs, and hence, cannot withstand a change in resolution or discretization between training and testing. We introduce Fourier neural operators that can learn operators, which are mappings between infinite dimensional spaces. They are discretization-invariant and can generalize beyond the discretization or resolution of training data. They can efficiently solve partial differential equations (PDEs) on general geometries. We consider a variety of PDEs for both forward modeling and inverse design problems, as well as show practical gains in the lithography domain.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning surrogate models have shown promise in modeling complex physical phenomena such as photonics, fluid flows, molecular dynamics and material properties. However, standard neural networks assume finite-dimensional inputs and outputs, and hence, cannot withstand a change in resolution or discretization between training and testing. We introduce Fourier neural operators that can learn operators, which are mappings between infinite dimensional spaces. They are discretization-invariant and can generalize beyond the discretization or resolution of training data. They can efficiently solve partial differential equations (PDEs) on general geometries. We consider a variety of PDEs for both forward modeling and inverse design problems, as well as show practical gains in the lithography domain.