Neural Operators for Solving PDEs and Inverse Design

Anima Anandkumar
{"title":"Neural Operators for Solving PDEs and Inverse Design","authors":"Anima Anandkumar","doi":"10.1145/3569052.3578911","DOIUrl":null,"url":null,"abstract":"Deep learning surrogate models have shown promise in modeling complex physical phenomena such as photonics, fluid flows, molecular dynamics and material properties. However, standard neural networks assume finite-dimensional inputs and outputs, and hence, cannot withstand a change in resolution or discretization between training and testing. We introduce Fourier neural operators that can learn operators, which are mappings between infinite dimensional spaces. They are discretization-invariant and can generalize beyond the discretization or resolution of training data. They can efficiently solve partial differential equations (PDEs) on general geometries. We consider a variety of PDEs for both forward modeling and inverse design problems, as well as show practical gains in the lithography domain.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning surrogate models have shown promise in modeling complex physical phenomena such as photonics, fluid flows, molecular dynamics and material properties. However, standard neural networks assume finite-dimensional inputs and outputs, and hence, cannot withstand a change in resolution or discretization between training and testing. We introduce Fourier neural operators that can learn operators, which are mappings between infinite dimensional spaces. They are discretization-invariant and can generalize beyond the discretization or resolution of training data. They can efficiently solve partial differential equations (PDEs) on general geometries. We consider a variety of PDEs for both forward modeling and inverse design problems, as well as show practical gains in the lithography domain.
求解偏微分方程和反设计的神经算子
深度学习替代模型在模拟复杂的物理现象,如光子学、流体流动、分子动力学和材料特性方面显示出前景。然而,标准神经网络假设有限维输入和输出,因此,不能承受训练和测试之间分辨率或离散化的变化。我们引入可以学习算子的傅里叶神经算子,这些算子是无限维空间之间的映射。它们是离散不变性的,可以推广到训练数据的离散化或分辨率之外。它们可以有效地求解一般几何上的偏微分方程。我们考虑了各种pde的正演建模和反设计问题,并展示了光刻领域的实际收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信