ANALYSIS OF PLANTS’ GROWTH USING COMPUTER VISION METHODS

А. В. Матохина, В. В. Тищенко
{"title":"ANALYSIS OF PLANTS’ GROWTH USING COMPUTER VISION METHODS","authors":"А. В. Матохина, В. В. Тищенко","doi":"10.35266/1999-7604-2023-1-29-35","DOIUrl":null,"url":null,"abstract":"The study describes the development of a service for monitoring plants’ growth in an indoor greenhouse using computer vision models, visual data collection with the esp32-cam card, the OV5640 camera, and the YOLO v4 detection model for extracting individual plants from the images. The plants tracking was performed by the DeepSORT library. The study determined the age of plants according to their type in order to identify their growth rate and notify the user when the parameters achieved. The computer vision methods are implemented through the TensorFlow 2 framework, with 99 % of classification accuracy, and Random Forest coefficient of determination of 0.94 for the regression of a plant’s age.","PeriodicalId":431138,"journal":{"name":"Proceedings in Cybernetics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings in Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35266/1999-7604-2023-1-29-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study describes the development of a service for monitoring plants’ growth in an indoor greenhouse using computer vision models, visual data collection with the esp32-cam card, the OV5640 camera, and the YOLO v4 detection model for extracting individual plants from the images. The plants tracking was performed by the DeepSORT library. The study determined the age of plants according to their type in order to identify their growth rate and notify the user when the parameters achieved. The computer vision methods are implemented through the TensorFlow 2 framework, with 99 % of classification accuracy, and Random Forest coefficient of determination of 0.94 for the regression of a plant’s age.
利用计算机视觉方法对植物生长进行分析
该研究描述了利用计算机视觉模型、esp32-cam卡的视觉数据收集、OV5640摄像机以及用于从图像中提取单株植物的YOLO v4检测模型来监测室内温室植物生长的服务的开发。植物跟踪由DeepSORT库执行。该研究根据植物的类型确定它们的年龄,以便确定它们的生长速度,并在参数达到时通知用户。计算机视觉方法通过TensorFlow 2框架实现,分类准确率达到99%,植物年龄回归的随机森林决定系数为0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信