Compactification of the finite Drinfeld period domain as a moduli space of ferns

A. Puttick
{"title":"Compactification of the finite Drinfeld period domain as a moduli space of ferns","authors":"A. Puttick","doi":"10.3929/ETHZ-B-000314055","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{F}_q$ be a finite field with $q$ elements and let $V$ be a vector space over $\\mathbb{F}_q$ of dimension $n>0$. Let $\\Omega_V$ be the Drinfeld period domain over $\\mathbb{F}_q$. This is an affine scheme of finite type over $\\mathbb{F}_q$, and its base change to $\\mathbb{F}_q(t)$ is the moduli space of Drinfeld $\\mathbb{F}_q[t]$-modules with level $(t)$ structure and rank $n$. In this thesis, we give a new modular interpretation to Pink and Schieder's smooth compactification $B_V$ of $\\Omega_V$. Let $\\hat V$ be the set $V\\cup\\{\\infty\\}$ for a new symbol $\\infty$. We define the notion of a $V$-fern over an $\\mathbb{F}_q$-scheme $S$, which consists of a stable $\\hat V$-marked curve of genus $0$ over $S$ endowed with a certain action of the finite group $V\\rtimes \\mathbb{F}_q^\\times$. Our main result is that the scheme $B_V$ represents the functor that associates an $\\mathbb{F}_q$-scheme $S$ to the set of isomorphism classes of $V$-ferns over $S$. Thus $V$-ferns over $\\mathbb{F}_q(t)$-schemes can be regarded as generalizations of Drinfeld $\\mathbb{F}_q[t]$-modules with level $(t)$ structure and rank $n$. To prove this theorem, we construct an explicit universal $V$-fern over $B_V$. We then show that any $V$-fern over a scheme $S$ determines a unique morphism $S\\to B_V$, depending only its isomorphism class, and that the $V$-fern is isomorphic to the pullback of the universal $V$-fern along this morphism. We also give several functorial constructions involving $V$-ferns, some of which are used to prove the main result. These constructions correspond to morphisms between various modular compactifications of Drinfeld period domains over $\\mathbb{F}_q$. We describe these morphisms explicitly.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-B-000314055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathbb{F}_q$ be a finite field with $q$ elements and let $V$ be a vector space over $\mathbb{F}_q$ of dimension $n>0$. Let $\Omega_V$ be the Drinfeld period domain over $\mathbb{F}_q$. This is an affine scheme of finite type over $\mathbb{F}_q$, and its base change to $\mathbb{F}_q(t)$ is the moduli space of Drinfeld $\mathbb{F}_q[t]$-modules with level $(t)$ structure and rank $n$. In this thesis, we give a new modular interpretation to Pink and Schieder's smooth compactification $B_V$ of $\Omega_V$. Let $\hat V$ be the set $V\cup\{\infty\}$ for a new symbol $\infty$. We define the notion of a $V$-fern over an $\mathbb{F}_q$-scheme $S$, which consists of a stable $\hat V$-marked curve of genus $0$ over $S$ endowed with a certain action of the finite group $V\rtimes \mathbb{F}_q^\times$. Our main result is that the scheme $B_V$ represents the functor that associates an $\mathbb{F}_q$-scheme $S$ to the set of isomorphism classes of $V$-ferns over $S$. Thus $V$-ferns over $\mathbb{F}_q(t)$-schemes can be regarded as generalizations of Drinfeld $\mathbb{F}_q[t]$-modules with level $(t)$ structure and rank $n$. To prove this theorem, we construct an explicit universal $V$-fern over $B_V$. We then show that any $V$-fern over a scheme $S$ determines a unique morphism $S\to B_V$, depending only its isomorphism class, and that the $V$-fern is isomorphic to the pullback of the universal $V$-fern along this morphism. We also give several functorial constructions involving $V$-ferns, some of which are used to prove the main result. These constructions correspond to morphisms between various modular compactifications of Drinfeld period domains over $\mathbb{F}_q$. We describe these morphisms explicitly.
有限Drinfeld周期域作为蕨类的模空间的紧化
设$\mathbb{F}_q$是一个包含$q$个元素的有限域,设$V$是一个维度为$n>0$的$\mathbb{F}_q$上的向量空间。设$\Omega_V$为德林菲尔德周期域除以$\mathbb{F}_q$。这是一个在$\mathbb{F}_q$上的有限型仿射格式,它的基变换为$\mathbb{F}_q(t)$是层次结构为$(t)$,秩为$n$的Drinfeld $\mathbb{F}_q[t]$ -模块的模空间。本文对$\Omega_V$的Pink和Schieder平滑紧化$B_V$给出了一种新的模解释。设$\hat V$为新符号$\infty$的集合$V\cup\{\infty\}$。我们定义了一个$\mathbb{F}_q$ -方案$S$上的$V$ -蕨类的概念,该方案由一条稳定的$\hat V$ -标记曲线组成,该曲线在$S$上的属$0$具有一定的有限群$V\rtimes \mathbb{F}_q^\times$的作用。我们的主要结果是,方案$B_V$表示将$\mathbb{F}_q$ -方案$S$与$S$上的$V$ -蕨类的同构类集关联起来的函子。因此$\mathbb{F}_q(t)$ -方案上的$V$ -蕨类可以看作是具有层次$(t)$结构和等级$n$的Drinfeld $\mathbb{F}_q[t]$ -模块的推广。为了证明这个定理,我们构造了一个显式泛$V$ -fern在$B_V$上。然后,我们证明了方案$S$上的任何$V$ -蕨类都确定了唯一的态射$S\to B_V$,仅取决于其同构类,并且$V$ -蕨类与沿着该态射的通用$V$ -蕨类的回调是同构的。我们还给出了几个涉及$V$ -蕨类植物的函子结构,其中一些用于证明主要结果。这些结构对应于$\mathbb{F}_q$上的德林菲尔德周期域的各种模紧化之间的态射。我们明确地描述这些态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信