Implementation of the Radiosity Algorithm for Large Scale Scenes

Александр Щербаков, A. Shcherbakov, В.А. Фролов, V. Frolov
{"title":"Implementation of the Radiosity Algorithm for Large Scale Scenes","authors":"Александр Щербаков, A. Shcherbakov, В.А. Фролов, V. Frolov","doi":"10.30987/graphicon-2019-2-13-17","DOIUrl":null,"url":null,"abstract":"We propose an upgrade for the Radiosity algorithm that allows to efficiently apply radiosity for large scale scenes. This is achieved by considering only the patches located close to the observer. For each frame we update local form-factor matrix with a little set of patches, effectively reusing information from the previous frame in this way. Our method is completely expressed via matrix-vector operations, thus, it’s GPU implementation is natural and straightforward. We achieve high occupancy for both CPU and GPU versions of the algorithm by thanks to we use special matrix of several reflections for which update operation effectively combine computations with memory operations.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-13-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an upgrade for the Radiosity algorithm that allows to efficiently apply radiosity for large scale scenes. This is achieved by considering only the patches located close to the observer. For each frame we update local form-factor matrix with a little set of patches, effectively reusing information from the previous frame in this way. Our method is completely expressed via matrix-vector operations, thus, it’s GPU implementation is natural and straightforward. We achieve high occupancy for both CPU and GPU versions of the algorithm by thanks to we use special matrix of several reflections for which update operation effectively combine computations with memory operations.
大规模场景的辐射算法实现
我们提出了一个升级的Radiosity算法,允许有效地适用于大规模场景的Radiosity。这是通过只考虑靠近观察者的补丁来实现的。对于每一帧,我们用一小组补丁更新局部形状因子矩阵,以这种方式有效地重用了前一帧的信息。我们的方法完全通过矩阵向量运算来表达,因此,它的GPU实现是自然和直接的。由于我们使用了特殊的若干反射矩阵,更新操作有效地将计算与内存操作结合起来,因此我们在CPU和GPU版本的算法中都实现了较高的占用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信