Advanced Monitoring of Wind Turbine

S. A. T. Ouambo, A. Boum, A. M. Imano
{"title":"Advanced Monitoring of Wind Turbine","authors":"S. A. T. Ouambo, A. Boum, A. M. Imano","doi":"10.5772/INTECHOPEN.84840","DOIUrl":null,"url":null,"abstract":"This chapter presents a general framework for the doubly fed induction generator (DFIG). We apply and analyze the behavior of three estimation techniques, which are the unscented Kalman filter (UKF), the high gain observer (HGO) and the moving horizon estimation (MHE). These estimations are used for parameters estimation of the doubly fed induction generator (DFIG) driven by wind turbine. A comparison of those techniques has been made under different aspects notably, computation time and estimation accuracy in two modes of operation of the DFIG, the healthy mode and the faulty mode. The performance of the MHE has been clearly superior to other estimators during our experiments. These estimation tools can be used for monitoring purposes.","PeriodicalId":181952,"journal":{"name":"Wind Solar Hybrid Renewable Energy System","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Solar Hybrid Renewable Energy System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter presents a general framework for the doubly fed induction generator (DFIG). We apply and analyze the behavior of three estimation techniques, which are the unscented Kalman filter (UKF), the high gain observer (HGO) and the moving horizon estimation (MHE). These estimations are used for parameters estimation of the doubly fed induction generator (DFIG) driven by wind turbine. A comparison of those techniques has been made under different aspects notably, computation time and estimation accuracy in two modes of operation of the DFIG, the healthy mode and the faulty mode. The performance of the MHE has been clearly superior to other estimators during our experiments. These estimation tools can be used for monitoring purposes.
风力发电机的高级监测
本章给出了双馈感应发电机(DFIG)的一般框架。我们应用并分析了无嗅卡尔曼滤波(UKF)、高增益观测器(HGO)和移动视界估计(MHE)三种估计技术的行为。这些估计用于风力发电机驱动双馈感应发电机(DFIG)的参数估计。从不同方面比较了这些方法,特别是在DFIG的健康模式和故障模式两种运行模式下的计算时间和估计精度。在我们的实验中,MHE的性能明显优于其他估计器。这些评估工具可用于监视目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信