Approximating Behavioral HW Accelerators through Selective Partial Extractions onto Synthesizable Predictive Models

Siyuan Xu, Benjamin Carrión Schäfer
{"title":"Approximating Behavioral HW Accelerators through Selective Partial Extractions onto Synthesizable Predictive Models","authors":"Siyuan Xu, Benjamin Carrión Schäfer","doi":"10.1109/iccad45719.2019.8942119","DOIUrl":null,"url":null,"abstract":"This work presents a method to selectively extract portions of a behavioral description to be synthesized as a hardware accelerator using High-Level Synthesis (HLS) onto different predictive models in order to trade-off the accuracy of the accelerators' outputs with area and power. Because the main aim of this work is to synthesize the newly approximated behavioral description, we investigate the use of different predictive models, mainly linear regression (LR) and multi-layer perceptron (MLP), highlighting the trade-offs of using one over the other. In addition, we further extend the search space by reducing the precision of the predictive models' coefficients, thus, leading to a wider range of solutions. Experimental results using a variety of benchmarks from different domains show that our proposed method works well compared to another state of the art approximate solution.","PeriodicalId":363364,"journal":{"name":"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccad45719.2019.8942119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work presents a method to selectively extract portions of a behavioral description to be synthesized as a hardware accelerator using High-Level Synthesis (HLS) onto different predictive models in order to trade-off the accuracy of the accelerators' outputs with area and power. Because the main aim of this work is to synthesize the newly approximated behavioral description, we investigate the use of different predictive models, mainly linear regression (LR) and multi-layer perceptron (MLP), highlighting the trade-offs of using one over the other. In addition, we further extend the search space by reducing the precision of the predictive models' coefficients, thus, leading to a wider range of solutions. Experimental results using a variety of benchmarks from different domains show that our proposed method works well compared to another state of the art approximate solution.
基于可合成预测模型的选择性部分提取逼近行为HW加速器
这项工作提出了一种方法,可以选择性地提取行为描述的部分,使用高级合成(HLS)将其合成为硬件加速器到不同的预测模型上,以权衡加速器输出的精度与面积和功率。由于这项工作的主要目的是综合新的近似行为描述,我们研究了不同预测模型的使用,主要是线性回归(LR)和多层感知器(MLP),强调了使用其中一种的权衡。此外,我们通过降低预测模型系数的精度进一步扩展了搜索空间,从而导致更广泛的解决方案。使用来自不同领域的各种基准测试的实验结果表明,与另一种最先进的近似解决方案相比,我们提出的方法效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信