Quantization Effects in a CNN-based Channel Estimator

Fábio D. L. Coutinho, Hugerles S. Silva, P. Georgieva, Arnaldo S. R. Oliveira
{"title":"Quantization Effects in a CNN-based Channel Estimator","authors":"Fábio D. L. Coutinho, Hugerles S. Silva, P. Georgieva, Arnaldo S. R. Oliveira","doi":"10.1109/RWS55624.2023.10046330","DOIUrl":null,"url":null,"abstract":"In this paper, we study the impact of the convolutional neural networks (CNN) quantization for the channel estimation. In the wireless network edge, with the adoption of deep learning (DL) algorithms, the limited computational resources bottleneck needs to be considered. Thus, a study using a field-programmable gate array (FPGA) platform is carried out, where the resource utilization and the timing requirements are analyzed. A single-input single-output orthogonal frequency-division multiplexing (OFDM) end-to-end link is adopted in this work. The bit error rate (BER) measures the quantization impact of the CNN-based channel estimation on the global system. The obtained results show that an improvement in the maximum operating frequency and in the resource efficiency can be obtained without deteriorating the end-to-end performance.","PeriodicalId":110742,"journal":{"name":"2023 IEEE Radio and Wireless Symposium (RWS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS55624.2023.10046330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the impact of the convolutional neural networks (CNN) quantization for the channel estimation. In the wireless network edge, with the adoption of deep learning (DL) algorithms, the limited computational resources bottleneck needs to be considered. Thus, a study using a field-programmable gate array (FPGA) platform is carried out, where the resource utilization and the timing requirements are analyzed. A single-input single-output orthogonal frequency-division multiplexing (OFDM) end-to-end link is adopted in this work. The bit error rate (BER) measures the quantization impact of the CNN-based channel estimation on the global system. The obtained results show that an improvement in the maximum operating frequency and in the resource efficiency can be obtained without deteriorating the end-to-end performance.
基于cnn的信道估计器的量化效应
本文研究了卷积神经网络(CNN)量化对信道估计的影响。在无线网络边缘,采用深度学习(DL)算法,需要考虑计算资源有限的瓶颈。因此,本文利用现场可编程门阵列(FPGA)平台进行了研究,分析了资源利用率和时序要求。本文采用单输入单输出正交频分复用(OFDM)端到端链路。误码率(BER)衡量的是基于cnn的信道估计对全局系统的量化影响。结果表明,在不降低端到端性能的情况下,可以提高最大工作频率和资源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信