Regularization Parameter Selection via Cross-Validation in the Presence of Dependent Regressors: A Simulation Study

Yoshimasa Uematsu, Shinya Tanaka
{"title":"Regularization Parameter Selection via Cross-Validation in the Presence of Dependent Regressors: A Simulation Study","authors":"Yoshimasa Uematsu, Shinya Tanaka","doi":"10.2139/ssrn.2700945","DOIUrl":null,"url":null,"abstract":"This letter reveals using simulation studies that regularization parameter selection via cross-validation (CV) in penalized regressions (e.g., Lasso) is valid even if the regressors are weakly dependent. In CV procedure, the time series structure of the data set is broken, meaning that there may occur a fatal problem unless the sample is i.i.d.; the estimation accuracy in the training step could be worse due to corruption of data continuity, which may furthermore lead to a bad choice of the regularization parameter. Even in such a situation, we find that CV works well as long as the sample size grows. These findings encourage us to apply the selection procedure via CV to macroeconomic empirical analyses with dependent regressors.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2700945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This letter reveals using simulation studies that regularization parameter selection via cross-validation (CV) in penalized regressions (e.g., Lasso) is valid even if the regressors are weakly dependent. In CV procedure, the time series structure of the data set is broken, meaning that there may occur a fatal problem unless the sample is i.i.d.; the estimation accuracy in the training step could be worse due to corruption of data continuity, which may furthermore lead to a bad choice of the regularization parameter. Even in such a situation, we find that CV works well as long as the sample size grows. These findings encourage us to apply the selection procedure via CV to macroeconomic empirical analyses with dependent regressors.
在相关回归量存在下通过交叉验证的正则化参数选择:模拟研究
这封信揭示了使用模拟研究,通过交叉验证(CV)在惩罚回归(例如,Lasso)中的正则化参数选择是有效的,即使回归量是弱相关的。在CV过程中,数据集的时间序列结构被破坏,这意味着除非样本被id,否则可能会出现致命的问题;由于数据连续性的破坏,训练阶段的估计精度会降低,进而导致正则化参数的选择不当。即使在这种情况下,我们发现只要样本量增加,CV就能很好地工作。这些发现鼓励我们通过CV将选择程序应用于具有相关回归的宏观经济实证分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信