Approximate optimal periodogram smoothing for cepstrum estimation using a penalty term

J. Sandberg, M. Hansson
{"title":"Approximate optimal periodogram smoothing for cepstrum estimation using a penalty term","authors":"J. Sandberg, M. Hansson","doi":"10.5281/ZENODO.41969","DOIUrl":null,"url":null,"abstract":"The cepstrum of a random process is useful in many applications. The cepstrum is usually estimated from the periodogram. To reduce the mean square error (MSE) of the estimator, the periodogram may be smoothed with a kernel function. We present an explicit expression for a kernel function which is approximatively MSE optimal for cepstrum estimation. A penalty term has to be added to the minimization problem, but we demonstrate how the weighting of the penalty term can be chosen. The performance of the estimator is evaluated on simulated processes. Since the MSE optimal smoothing kernel depends on the true covariance function, we give an example of a simple data driven method.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.41969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The cepstrum of a random process is useful in many applications. The cepstrum is usually estimated from the periodogram. To reduce the mean square error (MSE) of the estimator, the periodogram may be smoothed with a kernel function. We present an explicit expression for a kernel function which is approximatively MSE optimal for cepstrum estimation. A penalty term has to be added to the minimization problem, but we demonstrate how the weighting of the penalty term can be chosen. The performance of the estimator is evaluated on simulated processes. Since the MSE optimal smoothing kernel depends on the true covariance function, we give an example of a simple data driven method.
使用惩罚项估计倒谱的近似最优周期图平滑
随机过程的倒谱在许多应用中都很有用。倒谱通常由周期图估计。为了减小估计器的均方误差(MSE),可以用核函数对周期图进行平滑。我们给出了一个核函数的显式表达式,它在倒谱估计中近似为MSE最优。最小化问题必须添加一个惩罚项,但我们演示了如何选择惩罚项的权重。在仿真过程中对估计器的性能进行了评价。由于MSE最优平滑核依赖于真协方差函数,我们给出了一个简单的数据驱动方法的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信