Plastic Collapse Evaluation of Fuel Channel Assembly in Pressurized Heavy Water Reactor

J. Choi, Seok-Jun Kang, J. Choi
{"title":"Plastic Collapse Evaluation of Fuel Channel Assembly in Pressurized Heavy Water Reactor","authors":"J. Choi, Seok-Jun Kang, J. Choi","doi":"10.1115/PVP2018-84463","DOIUrl":null,"url":null,"abstract":"400 fuel channel assemblies are there in a PHWR. Each assembly consist of a CT as outer tube, a PT as inner tube, and 4 GSs to prevent contact between two tubes. The fuel bundles, inserted into PT of fuel channel assembly, heat the coolant to high temperature by nuclear fission. Furthermore, the pressurizer compresses the coolant not to boil in high temperature. From this, high pressure and high temperature condition happened in the PT. So, the integrity of PTs needs to be guaranteed. Although large number of previous researches were performed, they assumed a PT as single tube and did not take into account the constrained effect. In actual behavior, PT contact with CT, GS or both. In addition, its structural shape made bending restraint effect to the PT. Since the contact force and bending restraint effect make limit in behavior of the PT, previous evaluation results are not accurate. In order to obtain more accurate result, it is needed for the PT to be modeled as fuel channel assembly including CT and GSs. For this, 3D FE model of fuel channel assembly is proposed and validated by comparing with previous creep analysis result in previous study. In this study, fracture mechanical FE analysis is conducted for the PHWR fuel channel with circumferential surface or through-wall crack at the PT. Parameters of PIP geometry and bending restraint effect which can apply to plastic collapse evaluation of the PHWR fuel channels are extracted.","PeriodicalId":275459,"journal":{"name":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

400 fuel channel assemblies are there in a PHWR. Each assembly consist of a CT as outer tube, a PT as inner tube, and 4 GSs to prevent contact between two tubes. The fuel bundles, inserted into PT of fuel channel assembly, heat the coolant to high temperature by nuclear fission. Furthermore, the pressurizer compresses the coolant not to boil in high temperature. From this, high pressure and high temperature condition happened in the PT. So, the integrity of PTs needs to be guaranteed. Although large number of previous researches were performed, they assumed a PT as single tube and did not take into account the constrained effect. In actual behavior, PT contact with CT, GS or both. In addition, its structural shape made bending restraint effect to the PT. Since the contact force and bending restraint effect make limit in behavior of the PT, previous evaluation results are not accurate. In order to obtain more accurate result, it is needed for the PT to be modeled as fuel channel assembly including CT and GSs. For this, 3D FE model of fuel channel assembly is proposed and validated by comparing with previous creep analysis result in previous study. In this study, fracture mechanical FE analysis is conducted for the PHWR fuel channel with circumferential surface or through-wall crack at the PT. Parameters of PIP geometry and bending restraint effect which can apply to plastic collapse evaluation of the PHWR fuel channels are extracted.
重水堆燃料通道组件塑性破坏评价
在PHWR中有400个燃料通道组件。每个组件包括一个CT作为外管,一个PT作为内管,以及4个gs,以防止两管之间的接触。燃料束插入燃料通道组件的PT中,通过核裂变将冷却剂加热到高温。此外,稳压器对冷却剂进行压缩,使其在高温下不沸腾。由此,PT内发生高压高温状态,需要保证PT的完整性。虽然之前进行了大量的研究,但他们将PT假设为单管,没有考虑约束效应。在实际行为中,PT与CT、GS或两者都有接触。此外,其结构形状对PT产生了弯曲约束效应,由于接触力和弯曲约束效应限制了PT的行为,因此以往的评价结果并不准确。为了得到更精确的结果,需要将PT建模为包含CT和GSs的燃料通道组件。为此,提出了燃油通道组件的三维有限元模型,并与前人的蠕变分析结果进行了对比验证。本研究对带周向表面裂纹和贯通壁裂纹的重水堆燃料通道进行了断裂力学有限元分析,提取了可用于重水堆燃料通道塑性破坏评价的重水堆燃料通道PIP几何参数和弯曲约束效应参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信