{"title":"Using Deep Learning for Fusion of Eye and Mouse Movement based User Authentication","authors":"Yudong Liu, Yusheng Jiang, John Devenere","doi":"10.1109/IJCB48548.2020.9304926","DOIUrl":null,"url":null,"abstract":"This paper presents a deep learning based user authentication system which aims to identify an individual using data gathered from a mouse and the user's eyes during computer use in a controlled environment. A stacked bidirectional and unidirectional Long Short-Term Memory Recurrent Neural Network (SBV-LSTM-RNN) is introduced to distinguish a legitimate user from impostors. As one of the few attempts of using fusion of mouse and eye movement for user authentication, the proposed system, when adopted on a small dataset, has shown promising improvement compared to a similar system where fusion of eye and mouse modalities and a traditional machine learning method are used.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a deep learning based user authentication system which aims to identify an individual using data gathered from a mouse and the user's eyes during computer use in a controlled environment. A stacked bidirectional and unidirectional Long Short-Term Memory Recurrent Neural Network (SBV-LSTM-RNN) is introduced to distinguish a legitimate user from impostors. As one of the few attempts of using fusion of mouse and eye movement for user authentication, the proposed system, when adopted on a small dataset, has shown promising improvement compared to a similar system where fusion of eye and mouse modalities and a traditional machine learning method are used.