Clustering of Microbiome Data: Evaluation of Ensemble Design Approaches

T. Lončar-Turukalo, I. Lazić, Nina Maljkovic, S. Brdar
{"title":"Clustering of Microbiome Data: Evaluation of Ensemble Design Approaches","authors":"T. Lončar-Turukalo, I. Lazić, Nina Maljkovic, S. Brdar","doi":"10.1109/EUROCON.2019.8861929","DOIUrl":null,"url":null,"abstract":"The research focus on the human microbiome is moving towards uncovering its association with the overall wellbeing and using this knowledge in personalized medicine and connected health. Driven by more affordable highthroughput sequencing, microbiome data generation rate has increased, enabling an efficient implementation of data-driven algorithms. This study evaluates the possibilities to identify clusters in a human microbiome data based on taxonomic profiles, relying on 24 different $\\beta $diversity measures, individual and ensemble clustering approaches. The influence of ensemble creation techniques and parameter selection to the robustness and quality of consensus partition was explored. Furthermore, we have evaluated changes in the clustering performance after dimensionality reduction. The results indicate that careful selection of the algorithm parameters and ensemble design are needed to ensure the stable consensus partition. Reduction in the number of input features using kernel principal component analysis is accompanied with loss of discrimination potential.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The research focus on the human microbiome is moving towards uncovering its association with the overall wellbeing and using this knowledge in personalized medicine and connected health. Driven by more affordable highthroughput sequencing, microbiome data generation rate has increased, enabling an efficient implementation of data-driven algorithms. This study evaluates the possibilities to identify clusters in a human microbiome data based on taxonomic profiles, relying on 24 different $\beta $diversity measures, individual and ensemble clustering approaches. The influence of ensemble creation techniques and parameter selection to the robustness and quality of consensus partition was explored. Furthermore, we have evaluated changes in the clustering performance after dimensionality reduction. The results indicate that careful selection of the algorithm parameters and ensemble design are needed to ensure the stable consensus partition. Reduction in the number of input features using kernel principal component analysis is accompanied with loss of discrimination potential.
微生物组数据的聚类:集成设计方法的评价
对人类微生物组的研究重点正朝着揭示其与整体健康的关系,并将这些知识用于个性化医疗和互联健康的方向发展。在更经济实惠的高通量测序的推动下,微生物组数据生成率增加,使数据驱动算法能够有效实施。本研究评估了基于分类概况的人类微生物组数据中识别聚类的可能性,依赖于24种不同的$\beta $多样性测量,个体和整体聚类方法。探讨了集成创建技术和参数选择对一致性划分鲁棒性和质量的影响。此外,我们还评估了降维后聚类性能的变化。结果表明,为了保证一致性划分的稳定性,需要仔细选择算法参数并进行集成设计。使用核主成分分析减少输入特征的数量会导致识别潜力的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信