A Fast Parameters Selection Method of Support Vector Machine Based on Coarse Grid Search and Pattern Search

Jing Zhang, Jun Lin
{"title":"A Fast Parameters Selection Method of Support Vector Machine Based on Coarse Grid Search and Pattern Search","authors":"Jing Zhang, Jun Lin","doi":"10.1109/GCIS.2013.18","DOIUrl":null,"url":null,"abstract":"Parameters selection of support vector machine (SVM) is a key problem in the application of SVM, which has influence on generalization performance of SVM. The commonly used method, grid search (GS), is time-consuming especially for very large dataset. By using coarse grid search and pattern search (PS) to select kernel parameters and penalty factor, a fast method of parameters selection of SVM based on hybrid optimization strategy is proposed in this paper. The proposed method adequately combines the advantages of GS and PS. The experiment results demonstrate that this proposed method can not only improve accuracy and generalization performance of SVM, but also save much more time.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Parameters selection of support vector machine (SVM) is a key problem in the application of SVM, which has influence on generalization performance of SVM. The commonly used method, grid search (GS), is time-consuming especially for very large dataset. By using coarse grid search and pattern search (PS) to select kernel parameters and penalty factor, a fast method of parameters selection of SVM based on hybrid optimization strategy is proposed in this paper. The proposed method adequately combines the advantages of GS and PS. The experiment results demonstrate that this proposed method can not only improve accuracy and generalization performance of SVM, but also save much more time.
基于粗网格搜索和模式搜索的支持向量机快速参数选择方法
支持向量机的参数选择是支持向量机应用中的一个关键问题,它直接影响到支持向量机的泛化性能。常用的网格搜索(GS)方法耗时长,特别是对于非常大的数据集。提出了一种基于混合优化策略的支持向量机参数快速选择方法,采用粗网格搜索和模式搜索(PS)选择核参数和惩罚因子。该方法充分结合了支持向量机和支持向量机的优点,实验结果表明,该方法不仅提高了支持向量机的准确率和泛化性能,而且节省了大量时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信