On the inverse of Hopfield-type dynamical neural networks

A. Hodge, Wei Zhen, R. Newcomb
{"title":"On the inverse of Hopfield-type dynamical neural networks","authors":"A. Hodge, Wei Zhen, R. Newcomb","doi":"10.1109/ACSSC.1995.540826","DOIUrl":null,"url":null,"abstract":"A technique is given for finding the system inverse to an Hopfield class of continuous time dynamical artificial neural networks, that is, for finding the system which yields the equivalence class of inputs which lead to a given output. This is accomplished by applying the theory of inverse semistate linear systems to the linear part and directly inverting the activation functions. An example is given for a two-input two-output degree two (two neuron) system. The results could be of use in finding the set of patterns which fall into different classes of a neural network dynamic pattern classifier.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A technique is given for finding the system inverse to an Hopfield class of continuous time dynamical artificial neural networks, that is, for finding the system which yields the equivalence class of inputs which lead to a given output. This is accomplished by applying the theory of inverse semistate linear systems to the linear part and directly inverting the activation functions. An example is given for a two-input two-output degree two (two neuron) system. The results could be of use in finding the set of patterns which fall into different classes of a neural network dynamic pattern classifier.
hopfield型动态神经网络的逆
给出了一种寻找连续时间动态人工神经网络Hopfield类的系统逆的技术,即寻找产生等价输入类并导致给定输出的系统。这是通过将逆半状态线性系统的理论应用于线性部分并直接求逆激活函数来实现的。给出了一个二输入二输出二阶(双神经元)系统的实例。该结果可用于寻找属于不同类别的神经网络动态模式分类器的模式集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信