{"title":"Multi-objective evolution of artificial neural networks in multi-class medical diagnosis problems with class imbalance","authors":"A. Shenfield, Shahin Rostami","doi":"10.1109/CIBCB.2017.8058553","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel multi-objective optimisatìon approach to solving both the problem of finding good structural and parametric choices in an ANN and the problem of training a classifier with a heavily skewed data set. The state-of-the-art CMA-PAES-HAGA multi-objective evolutionary algorithm [41] is used to simultaneously optimise the structure, weights, and biases of a population of ANNs with respect to not only the overall classification accuracy, but the classification accuracies of each individual target class. The effectiveness of this approach is then demonstrated on a real-world multi-class problem in medical diagnosis (classification of fetal cardiotocogorams) where more than 75% of the data belongs to the majority class and the rest to two other minority classes. The optimised ANN is shown to significantiy outperform a standard feed-forward ANN with respect to minority class recognition at the cost of slightiy worse performance in terms of overall classification accuracy.","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This paper proposes a novel multi-objective optimisatìon approach to solving both the problem of finding good structural and parametric choices in an ANN and the problem of training a classifier with a heavily skewed data set. The state-of-the-art CMA-PAES-HAGA multi-objective evolutionary algorithm [41] is used to simultaneously optimise the structure, weights, and biases of a population of ANNs with respect to not only the overall classification accuracy, but the classification accuracies of each individual target class. The effectiveness of this approach is then demonstrated on a real-world multi-class problem in medical diagnosis (classification of fetal cardiotocogorams) where more than 75% of the data belongs to the majority class and the rest to two other minority classes. The optimised ANN is shown to significantiy outperform a standard feed-forward ANN with respect to minority class recognition at the cost of slightiy worse performance in terms of overall classification accuracy.