Improving Dialogue Response Generation Via Knowledge Graph Filter

Yanmeng Wang, Ye Wang, Xingyu Lou, Wenge Rong, Zhenghong Hao, Shaojun Wang
{"title":"Improving Dialogue Response Generation Via Knowledge Graph Filter","authors":"Yanmeng Wang, Ye Wang, Xingyu Lou, Wenge Rong, Zhenghong Hao, Shaojun Wang","doi":"10.1109/ICASSP39728.2021.9414324","DOIUrl":null,"url":null,"abstract":"Current generative dialogue systems tend to produce generic dialog responses, which lack useful information and semantic coherence. An promising method to alleviate this problem is to integrate knowledge triples from knowledge base. However, current approaches mainly augment Seq2Seq framework with knowledge-aware mechanism to retrieve a large number of knowledge triples without considering specific dialogue context, which probably results in knowledge redundancy and incomplete knowledge comprehension. In this paper, we propose to leverage the contextual word representation of dialog post to filter out irrelevant knowledge with an attention-based triple filter network. We introduce a novel knowledge-enriched framework to integrate the filtered knowledge into the dialogue representation. Entity copy is further proposed to facilitate the integration of the knowledge during generation. Experiments on dialogue generation tasks have shown the proposed framework’s promising potential.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Current generative dialogue systems tend to produce generic dialog responses, which lack useful information and semantic coherence. An promising method to alleviate this problem is to integrate knowledge triples from knowledge base. However, current approaches mainly augment Seq2Seq framework with knowledge-aware mechanism to retrieve a large number of knowledge triples without considering specific dialogue context, which probably results in knowledge redundancy and incomplete knowledge comprehension. In this paper, we propose to leverage the contextual word representation of dialog post to filter out irrelevant knowledge with an attention-based triple filter network. We introduce a novel knowledge-enriched framework to integrate the filtered knowledge into the dialogue representation. Entity copy is further proposed to facilitate the integration of the knowledge during generation. Experiments on dialogue generation tasks have shown the proposed framework’s promising potential.
基于知识图过滤器的对话响应生成改进
当前的生成对话系统往往产生泛化的对话反应,缺乏有用的信息和语义连贯性。对知识库中的知识三元组进行集成是解决这一问题的一种有效方法。然而,目前的方法主要是通过知识感知机制增强Seq2Seq框架来检索大量的知识三元组,而没有考虑具体的对话上下文,这可能导致知识冗余和知识理解不完全。在本文中,我们提出利用基于注意力的三重过滤网络,利用对话帖子的上下文词表示来过滤掉不相关的知识。我们引入了一种新的知识丰富框架,将过滤后的知识整合到对话表示中。进一步提出了实体复制,便于知识生成过程中的整合。在对话生成任务上的实验表明了该框架的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信