Existence of positive solutions for boundary value problems of nonlinear fractional functional integro-differential equations

Xiaoying Yang
{"title":"Existence of positive solutions for boundary value problems of nonlinear fractional functional integro-differential equations","authors":"Xiaoying Yang","doi":"10.25236/AJMS.2021.020101","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of positive solutions for a class of fractional functional integro-differential equations with two fractional derivative terms. First, we transform the boundary value problem into an equivalent integral equation, establish the operator T and prove its full continuity, then the existence theorems of positive solutions of boundary value problems is established by using the fixed point theorems of cone extension and cone compression.","PeriodicalId":372277,"journal":{"name":"Academic Journal of Mathematical Sciences","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/AJMS.2021.020101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the existence of positive solutions for a class of fractional functional integro-differential equations with two fractional derivative terms. First, we transform the boundary value problem into an equivalent integral equation, establish the operator T and prove its full continuity, then the existence theorems of positive solutions of boundary value problems is established by using the fixed point theorems of cone extension and cone compression.
非线性分数阶泛函积分微分方程边值问题正解的存在性
本文研究了一类具有两个分数阶导数项的分数阶泛函积分微分方程正解的存在性。首先将边值问题转化为等价积分方程,建立算子T并证明其完全连续性,然后利用锥伸展不动点定理和锥压缩不动点定理,建立了边值问题正解的存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信