Analisa dan Perancangan Machine Learning Untuk Mendeteksi Kegagalan Job di Apache Spark

Eri Dariato
{"title":"Analisa dan Perancangan Machine Learning Untuk Mendeteksi Kegagalan Job di Apache Spark","authors":"Eri Dariato","doi":"10.29240/arcitech.v2i1.4124","DOIUrl":null,"url":null,"abstract":"A collection of data stored in a database, so the longer the data, the bigger the data, because the data processed is very large, processing time in Apache Spark can take up to a dozen or tens of hours. Sometimes, the Apache Spark application even fails. Therefore, to minimize the waiting time that could have been avoided or reduced, artificial intelligence through Machine Learning will be used to detect whether an Apache Spark application will fail or run smoothly. Factors to determine this failure are called features and are generated through the feature engineering process. The purpose of this research is to design Machine Learning so that it is able to find out what features will determine the success or failure of the Apache Spark application. The research method used is the Prototyping process model.","PeriodicalId":261431,"journal":{"name":"Arcitech: Journal of Computer Science and Artificial Intelligence","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arcitech: Journal of Computer Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29240/arcitech.v2i1.4124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A collection of data stored in a database, so the longer the data, the bigger the data, because the data processed is very large, processing time in Apache Spark can take up to a dozen or tens of hours. Sometimes, the Apache Spark application even fails. Therefore, to minimize the waiting time that could have been avoided or reduced, artificial intelligence through Machine Learning will be used to detect whether an Apache Spark application will fail or run smoothly. Factors to determine this failure are called features and are generated through the feature engineering process. The purpose of this research is to design Machine Learning so that it is able to find out what features will determine the success or failure of the Apache Spark application. The research method used is the Prototyping process model.
一组数据存储在一个数据库中,所以数据越长,数据越大,因为处理的数据非常大,在Apache Spark中处理的时间可以长达十几个小时甚至几十个小时。有时,Apache Spark应用程序甚至会失败。因此,为了最大限度地减少本可以避免或减少的等待时间,将使用通过机器学习的人工智能来检测Apache Spark应用程序是否会失败或正常运行。决定这种故障的因素称为特征,并通过特征工程过程生成。本研究的目的是设计机器学习,以便能够找出哪些特性将决定Apache Spark应用程序的成功或失败。本文采用的研究方法是原型过程模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信