Groups and polytopes

Stefan Friedl, W. Luck, Stephan Tillmann
{"title":"Groups and polytopes","authors":"Stefan Friedl, W. Luck, Stephan Tillmann","doi":"10.1090/pspum/102/05","DOIUrl":null,"url":null,"abstract":"In a series of papers the authors associated to an $L^2$-acyclic group $\\Gamma$ an invariant $\\mathcal{P}(\\Gamma)$ that is a formal difference of polytopes in the vector space $H_1(\\Gamma;\\Bbb{R})$. This invariant is in particular defined for most 3-manifold groups, for most 2-generator 1-relator groups and for all free-by-cyclic groups. In most of the above cases the invariant can be viewed as an actual polytope. \nIn this survey paper we will recall the definition of the polytope invariant $\\mathcal{P}(\\Gamma)$ and we state some of the main properties. We conclude with a list of open problems.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/pspum/102/05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In a series of papers the authors associated to an $L^2$-acyclic group $\Gamma$ an invariant $\mathcal{P}(\Gamma)$ that is a formal difference of polytopes in the vector space $H_1(\Gamma;\Bbb{R})$. This invariant is in particular defined for most 3-manifold groups, for most 2-generator 1-relator groups and for all free-by-cyclic groups. In most of the above cases the invariant can be viewed as an actual polytope. In this survey paper we will recall the definition of the polytope invariant $\mathcal{P}(\Gamma)$ and we state some of the main properties. We conclude with a list of open problems.
基团和多面体
在一系列的论文中,作者提出了一个$L^2$-无环群$\Gamma$一个不变的$\mathcal{P}(\Gamma)$,它是向量空间$H_1(\Gamma;\Bbb{R})$中多交体的形式差分。对于大多数3流形群、大多数2-生成1-相关群和所有自由循环群,这个不变量是特别定义的。在上述大多数情况下,不变量可以看作是一个实际的多面体。在本文中,我们将回顾多面体不变量$\mathcal{P}(\Gamma)$的定义,并陈述其一些主要性质。最后,我们列出了一系列尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信