Research on Human Action Recognition Based on Convolutional Neural Network

Peng Wang, Yuliang Yang, Wanchong Li, Linhao Zhang, Mengyuan Wang, Xiaobo Zhang, Mengyu Zhu
{"title":"Research on Human Action Recognition Based on Convolutional Neural Network","authors":"Peng Wang, Yuliang Yang, Wanchong Li, Linhao Zhang, Mengyuan Wang, Xiaobo Zhang, Mengyu Zhu","doi":"10.1109/WOCC.2019.8770575","DOIUrl":null,"url":null,"abstract":"This paper proposes a human action recognition (HAR) algorithm based on convolutional neural network, which is used for human semaphore motion recognition. First, collecting datas in three scenarios and Deep Convolution Generative Adversarial Networks(DCGAN) is used to implement data enhancement to generate the dataset (DataSR). Then, the 1*1 and 3*3 convolution kernels are used to design the full convolution network and the model is further compressed using the group convolution to obtain the new model HARNET. Experiments show that the mAP of HARNET on the DataSR dataset is 94.36%, and the model size is 76M, which is 30% of the size of the YOLOv3 model.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a human action recognition (HAR) algorithm based on convolutional neural network, which is used for human semaphore motion recognition. First, collecting datas in three scenarios and Deep Convolution Generative Adversarial Networks(DCGAN) is used to implement data enhancement to generate the dataset (DataSR). Then, the 1*1 and 3*3 convolution kernels are used to design the full convolution network and the model is further compressed using the group convolution to obtain the new model HARNET. Experiments show that the mAP of HARNET on the DataSR dataset is 94.36%, and the model size is 76M, which is 30% of the size of the YOLOv3 model.
基于卷积神经网络的人体动作识别研究
提出了一种基于卷积神经网络的人体动作识别算法,用于人体信号量运动识别。首先,在三种场景下收集数据,并使用深度卷积生成对抗网络(DCGAN)实现数据增强以生成数据集(DataSR)。然后,利用1*1和3*3卷积核设计全卷积网络,并利用群卷积进一步压缩模型,得到新模型HARNET。实验表明,HARNET在DataSR数据集上的mAP为94.36%,模型大小为76M,是YOLOv3模型大小的30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信