Using data mining for mobile communication clustering and characterization

A. Bascacov, C. Cernazanu-Glavan, M. Marcu
{"title":"Using data mining for mobile communication clustering and characterization","authors":"A. Bascacov, C. Cernazanu-Glavan, M. Marcu","doi":"10.1109/SACI.2013.6609004","DOIUrl":null,"url":null,"abstract":"Nowadays most telecommunication companies use data mining algorithms to analyze and profile their customers based on their communication behaviour. However, similar analysis can be elaborated on call data available to any organization that use any type of communication technologies (e.g. mobile, PBX, VoIP, teleconference). Therefore, in this paper we investigate how data mining algorithms can be used to characterize employers' communication patterns and their influence on business related activities.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6609004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Nowadays most telecommunication companies use data mining algorithms to analyze and profile their customers based on their communication behaviour. However, similar analysis can be elaborated on call data available to any organization that use any type of communication technologies (e.g. mobile, PBX, VoIP, teleconference). Therefore, in this paper we investigate how data mining algorithms can be used to characterize employers' communication patterns and their influence on business related activities.
利用数据挖掘进行移动通信聚类与表征
目前,大多数电信公司都使用数据挖掘算法来分析和描述他们的客户的通信行为。然而,类似的分析可以对使用任何类型通信技术(例如,移动电话,PBX, VoIP,电话会议)的任何组织可用的呼叫数据进行详细阐述。因此,在本文中,我们研究了如何使用数据挖掘算法来描述雇主的沟通模式及其对业务相关活动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信