Radar pulse train parameter estimation and tracking using neural networks

G. Noone
{"title":"Radar pulse train parameter estimation and tracking using neural networks","authors":"G. Noone","doi":"10.1109/ANNES.1995.499448","DOIUrl":null,"url":null,"abstract":"The post-deinterleaving radar pulse train problem requires estimation of the parameters and tracking of the individual pulse trains. A simple recurrent backpropagation neural network is used based on a simple state space time series formulation of the radar problem. The network incorporates a novel heuristic adaptive error threshold that allows simultaneously good tracking and parameter estimating abilities. Two simple but revealing examples are presented to show how the network is robust to missing and spurious pulses, as well as multiple level staggers with discontinuous mode changes.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The post-deinterleaving radar pulse train problem requires estimation of the parameters and tracking of the individual pulse trains. A simple recurrent backpropagation neural network is used based on a simple state space time series formulation of the radar problem. The network incorporates a novel heuristic adaptive error threshold that allows simultaneously good tracking and parameter estimating abilities. Two simple but revealing examples are presented to show how the network is robust to missing and spurious pulses, as well as multiple level staggers with discontinuous mode changes.
基于神经网络的雷达脉冲序列参数估计与跟踪
后交错雷达脉冲串问题需要对脉冲串进行参数估计和跟踪。基于雷达问题的简单状态空间时间序列公式,采用简单的递归反向传播神经网络。该网络采用了一种新颖的启发式自适应误差阈值,同时具有良好的跟踪和参数估计能力。给出了两个简单但有启发意义的例子来说明网络如何对缺失脉冲和伪脉冲以及具有不连续模式变化的多电平交错具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信