В. П. Ольшанський, Сергій Вячеславович Харченко, М. В. Сліпченко, Степан Ковалишин, Михайло Мазурак
{"title":"Про розрахунок температури самозігрівання сировини в циліндричних ємностях","authors":"В. П. Ольшанський, Сергій Вячеславович Харченко, М. В. Сліпченко, Степан Ковалишин, Михайло Мазурак","doi":"10.31734/agroengineering2021.25.021","DOIUrl":null,"url":null,"abstract":"Розглянуто температурне поле органічної сировини в циліндричному силосі за наявності в ньому стрижньового осередку самозігрівання кругового поперечного перерізу. Аналітичний розв’язок нестаціонарної задачі теплопровідності виражено рядом Фур’є-Бесселя, при різних варіантах розподілу термоджерел в осередку самозігрівання. Показано, що рівномірний розподіл (однорідний осередок) дає найбільш швидкий приріст температури. Проаналізовано збіжність ряду, яким описано температурне поле. Встановлено, що збіжність поліпшується з плином часу, але вона дуже повільна на початку процесу самозігрівання. Запропоновано спосіб прискорення збіжності розв’язків задачі для окремих варіантів розподілу термоджерел. Побудовано графіки для ідентифікації радіуса осередку й подальшого визначення інтенсивності теплоджерел у ньому, при трьох варіантах їх розподілу. Ідентифікація ґрунтується на експериментальному вимірюванні приросту температур у центрі осередку за вибраний час. Це обмежує можливості методу, бо при великих розмірах осередку приріст температури в його центрі стає лінійним, як у необмеженому тілі з рівномірним розподілом термоджерел. Тому побудовані графіки втрачають сепарабельність великих розмірів осередку. Наведено приклади ідентифікації з використанням графіків. Показана можливість розрахункового прогнозу розвитку температури самозігрівання після проведення ідентифікації. Одержаний аналітичний розв’язок нестаціонарної задачі теплопровідності в поєднанні з експериментальним вимірюванням температури в центрі осередку самозігрівання дає змогу визначити параметри внутрішнього локалізованого термоджерела й провести прогноз розвитку температури самозігрівання.","PeriodicalId":212860,"journal":{"name":"Bulletin of Lviv National Agrarian University Agroengineering Research","volume":"799-800 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Lviv National Agrarian University Agroengineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31734/agroengineering2021.25.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Розглянуто температурне поле органічної сировини в циліндричному силосі за наявності в ньому стрижньового осередку самозігрівання кругового поперечного перерізу. Аналітичний розв’язок нестаціонарної задачі теплопровідності виражено рядом Фур’є-Бесселя, при різних варіантах розподілу термоджерел в осередку самозігрівання. Показано, що рівномірний розподіл (однорідний осередок) дає найбільш швидкий приріст температури. Проаналізовано збіжність ряду, яким описано температурне поле. Встановлено, що збіжність поліпшується з плином часу, але вона дуже повільна на початку процесу самозігрівання. Запропоновано спосіб прискорення збіжності розв’язків задачі для окремих варіантів розподілу термоджерел. Побудовано графіки для ідентифікації радіуса осередку й подальшого визначення інтенсивності теплоджерел у ньому, при трьох варіантах їх розподілу. Ідентифікація ґрунтується на експериментальному вимірюванні приросту температур у центрі осередку за вибраний час. Це обмежує можливості методу, бо при великих розмірах осередку приріст температури в його центрі стає лінійним, як у необмеженому тілі з рівномірним розподілом термоджерел. Тому побудовані графіки втрачають сепарабельність великих розмірів осередку. Наведено приклади ідентифікації з використанням графіків. Показана можливість розрахункового прогнозу розвитку температури самозігрівання після проведення ідентифікації. Одержаний аналітичний розв’язок нестаціонарної задачі теплопровідності в поєднанні з експериментальним вимірюванням температури в центрі осередку самозігрівання дає змогу визначити параметри внутрішнього локалізованого термоджерела й провести прогноз розвитку температури самозігрівання.