Comparison of Exergy and Various Energy Analysis Methods for a Main Marine Steam Turbine at Different Loads

N. Anđelić, V. Mrzljak, I. Lorencin, Sandi Baressi Segota
{"title":"Comparison of Exergy and Various Energy Analysis Methods for a Main Marine Steam Turbine at Different Loads","authors":"N. Anđelić, V. Mrzljak, I. Lorencin, Sandi Baressi Segota","doi":"10.18048/2020.59.01","DOIUrl":null,"url":null,"abstract":"This paper present energy and exergy analysis of the main marine steam turbine, which is used for the commercial LNG (Liquefied Natural Gas) carrier propulsion, at four different loads. Energy analysis is performed by using four different methods. The presented analysis allows distinguishing advantages and disadvantages of all observed energy analysis methods and its comparison to exergy analysis of the same steam turbine. Each analysis is based on the measurement results obtained in main turbine exploitation conditions. Main turbine is composed of two cylinders – High Pressure Cylinder (HPC) and Low Pressure Cylinder (LPC). At low turbine loads, the dominant power producer is HPC, while at middle and high loads the dominant power producer is LPC. Energy analysis Method 1 which is based on the same principles as exergy analysis, should be avoided if the majority of turbine losses are not known. Other observed energy analysis methods can be applied in the analysis of any steam turbine, with a note that increase in ideal (isentropic) steam expansion process divisions will result with an increase in energy losses and with a decrease in energy efficiency. Energy analysis Method 2 which consist of only one ideal (isentropic) steam expansion process, for the whole turbine and at all observed loads, results with the lowest energy losses (in the range between 639.98 kW and 6434.17 kW) as well as with the highest energy efficiency (in a range between 53.70% and 79.40%) in comparison to other applicable energy analysis methods. For the observed loads, whole main turbine exergy destruction is in range from 608.64 kW to 5922.86 kW, while the exergy efficiency range of the whole turbine is between 54.94% and 80.73%. Exergy analysis and all three applicable energy analysis methods show that increase in the main turbine load results with simultaneous increase in turbine losses and efficiencies (both energy and exergy).","PeriodicalId":366194,"journal":{"name":"Journal of Maritime & Transportation Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Maritime & Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18048/2020.59.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper present energy and exergy analysis of the main marine steam turbine, which is used for the commercial LNG (Liquefied Natural Gas) carrier propulsion, at four different loads. Energy analysis is performed by using four different methods. The presented analysis allows distinguishing advantages and disadvantages of all observed energy analysis methods and its comparison to exergy analysis of the same steam turbine. Each analysis is based on the measurement results obtained in main turbine exploitation conditions. Main turbine is composed of two cylinders – High Pressure Cylinder (HPC) and Low Pressure Cylinder (LPC). At low turbine loads, the dominant power producer is HPC, while at middle and high loads the dominant power producer is LPC. Energy analysis Method 1 which is based on the same principles as exergy analysis, should be avoided if the majority of turbine losses are not known. Other observed energy analysis methods can be applied in the analysis of any steam turbine, with a note that increase in ideal (isentropic) steam expansion process divisions will result with an increase in energy losses and with a decrease in energy efficiency. Energy analysis Method 2 which consist of only one ideal (isentropic) steam expansion process, for the whole turbine and at all observed loads, results with the lowest energy losses (in the range between 639.98 kW and 6434.17 kW) as well as with the highest energy efficiency (in a range between 53.70% and 79.40%) in comparison to other applicable energy analysis methods. For the observed loads, whole main turbine exergy destruction is in range from 608.64 kW to 5922.86 kW, while the exergy efficiency range of the whole turbine is between 54.94% and 80.73%. Exergy analysis and all three applicable energy analysis methods show that increase in the main turbine load results with simultaneous increase in turbine losses and efficiencies (both energy and exergy).
船用主汽轮机在不同负荷下的火用及各种能量分析方法的比较
本文介绍了用于商用LNG(液化天然气)运输船推进的主船用汽轮机在四种不同负荷下的能量和火用分析。能量分析采用了四种不同的方法。提出的分析可以区分所有观察到的能量分析方法的优缺点,并将其与同一汽轮机的火用分析进行比较。每次分析都是基于在主要汽轮机开发工况下获得的测量结果。主涡轮由高压缸(HPC)和低压缸(LPC)两缸组成。在低负荷时,以HPC为主,而在中高负荷时,以LPC为主。如果不知道涡轮机的大部分损失,则应避免采用与火用分析原理相同的能量分析方法1。其他观察到的能量分析方法可以应用于任何汽轮机的分析,需要注意的是,理想(等熵)蒸汽膨胀过程划分的增加将导致能量损失的增加和能源效率的降低。能量分析方法2只包含一个理想的(等熵)蒸汽膨胀过程,对于整个涡轮机和所有观察到的负荷,与其他适用的能量分析方法相比,能量损失最低(639.98 kW ~ 6434.17 kW),能量效率最高(53.70% ~ 79.40%)。在观测负荷下,主机组全机火用破坏范围为608.64 ~ 5922.86 kW,全机火用效率范围为54.94% ~ 80.73%。火用分析和所有三种适用的能量分析方法表明,主涡轮机负荷的增加导致涡轮机损失和效率(能量和火用)同时增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信