An Improved optimization Algorithm to Find Multiple Shortest Paths over Large Graph

Hayi Mohamed Yassine, C. Zahira
{"title":"An Improved optimization Algorithm to Find Multiple Shortest Paths over Large Graph","authors":"Hayi Mohamed Yassine, C. Zahira","doi":"10.1109/EDiS49545.2020.9296433","DOIUrl":null,"url":null,"abstract":"The problem of finding the shortest path is a combinatorial well-studied optimization problem, this last decade and is a challenging task over large graphs. This article presents an improved optimization Genetic algorithm (IOGA) to solve the k shortest paths problem. Our algorithm based on the combination of the exact algorithm (Dijkstra) and metaheuristic algorithm (Genetic algorithm-GA) is proposed to return the k shortest optimal paths on graph in large-scale routing problems. Our empirical results show that the proposed algorithm surpasses and runs faster than Dijkstra’s algorithm and gives one or more paths,, while Dijkstra gives only one path.","PeriodicalId":119426,"journal":{"name":"2020 Second International Conference on Embedded & Distributed Systems (EDiS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Second International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDiS49545.2020.9296433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The problem of finding the shortest path is a combinatorial well-studied optimization problem, this last decade and is a challenging task over large graphs. This article presents an improved optimization Genetic algorithm (IOGA) to solve the k shortest paths problem. Our algorithm based on the combination of the exact algorithm (Dijkstra) and metaheuristic algorithm (Genetic algorithm-GA) is proposed to return the k shortest optimal paths on graph in large-scale routing problems. Our empirical results show that the proposed algorithm surpasses and runs faster than Dijkstra’s algorithm and gives one or more paths,, while Dijkstra gives only one path.
一种改进的大型图上多条最短路径的优化算法
在过去的十年中,寻找最短路径的问题是一个组合优化问题,并且在大型图上是一个具有挑战性的任务。本文提出了一种改进的优化遗传算法(IOGA)来解决k条最短路径问题。本文提出了一种基于精确算法(Dijkstra)和元启发式算法(遗传算法- ga)相结合的算法,用于返回大规模路由问题中图上的k条最短最优路径。我们的实证结果表明,该算法优于Dijkstra算法,并且运行速度更快,并且给出了一条或多条路径,而Dijkstra算法只给出了一条路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信