Attractiveness of Invariant Manifolds of Two Dimensional Dynamical Systems

Pei Lijun
{"title":"Attractiveness of Invariant Manifolds of Two Dimensional Dynamical Systems","authors":"Pei Lijun","doi":"10.1109/IWCFTA.2012.15","DOIUrl":null,"url":null,"abstract":"In this paper an operable, universal and simple theory on the attractiveness of the invariant manifolds of the two-dimensional dynamical systems is first obtained. It is motivated by the Lyapunovdirect method. It means that for any point x<sup>→</sup> in the invariant manifold M, n(x<sup>→</sup>) is the normal passing by x<sup>→</sup>, and ∀x<sup>→</sup> ∈n(x<sup>→</sup>), if the tangent f(x<sup>→</sup>) of the orbit of the dynamical system intersects at obtuse (sharp) angle with the n(x<sup>→</sup>), or the inner product of the normal vector n<sup>→</sup>(x<sup>→</sup>) and tangent vector f<sup>→</sup>(x<sup>→</sup>) is negative (positive), i.e., f<sup>→</sup>(x<sup>→</sup>). n<sup>→</sup>(x<sup>→</sup>) <; (>;)0, then the invariant manifold M is attractive (repulsive). Some illustrative examples of the invariant manifolds, such as equilibria, periodic solution, stable and unstable manifolds, other invariant manifold are presented to support this result.","PeriodicalId":354870,"journal":{"name":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper an operable, universal and simple theory on the attractiveness of the invariant manifolds of the two-dimensional dynamical systems is first obtained. It is motivated by the Lyapunovdirect method. It means that for any point x in the invariant manifold M, n(x) is the normal passing by x, and ∀x ∈n(x), if the tangent f(x) of the orbit of the dynamical system intersects at obtuse (sharp) angle with the n(x), or the inner product of the normal vector n(x) and tangent vector f(x) is negative (positive), i.e., f(x). n(x) <; (>;)0, then the invariant manifold M is attractive (repulsive). Some illustrative examples of the invariant manifolds, such as equilibria, periodic solution, stable and unstable manifolds, other invariant manifold are presented to support this result.
二维动力系统不变流形的吸引性
本文首先给出了二维动力系统不变流形吸引性的一个可操作的、通用的、简单的理论。它是由李雅普诺夫直接法驱动的。它表示对于不变流形M中的任何点x→,n(x→)是经过x→的法向量,∀x→∈n(x→),若动力系统轨道的切向量f(x→)与n(x→)相交成钝角(锐角),或法向量n→(x→)与切向量f→(x→)的内积为负(正),即f→(x→)。n→(x→);)0,则不变流形M是吸引的(排斥的)。给出了一些不变量流形的例子,如平衡、周期解、稳定流形和不稳定流形,以及其他不变量流形来支持这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信