Effect of Moment of Inertia of Attached Mass on Natural Frequencies of Cantilevered Symmetrically Laminated Plates

K. Hosokawa
{"title":"Effect of Moment of Inertia of Attached Mass on Natural Frequencies of Cantilevered Symmetrically Laminated Plates","authors":"K. Hosokawa","doi":"10.25042/EPI-IJE.082018.05","DOIUrl":null,"url":null,"abstract":"Since composite materials such as laminated composite plates have high specific strength and high structural efficiency, they have been usedin many structural applications. It is therefore very important to make clear the vibration characteristics of the laminated plates for the designand the structural analysis. Especially, the vibration characteristics of the laminated plates with attached mass are essential. However, wecannot find the theoretical or experimental approaches for the free vibration of laminated plates with attached mass. In the present study, theexperimental and numerical approaches are applied to the free vibration of cantilevered symmetrically laminated plates with attached mass.First, by applying the experimental modal analysis technique to the cantilevered symmetrically laminated plates with attached mass, thenatural frequencies and mode shapes of the plates are obtained. Next, the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates with attached mass are calculated by Finite Element Method (FEM). Finally, from the experimental andnumerical results, the effect of the moment of inertia of the attached mass to the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates are clarified.","PeriodicalId":387754,"journal":{"name":"EPI International Journal of Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPI International Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25042/EPI-IJE.082018.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since composite materials such as laminated composite plates have high specific strength and high structural efficiency, they have been usedin many structural applications. It is therefore very important to make clear the vibration characteristics of the laminated plates for the designand the structural analysis. Especially, the vibration characteristics of the laminated plates with attached mass are essential. However, wecannot find the theoretical or experimental approaches for the free vibration of laminated plates with attached mass. In the present study, theexperimental and numerical approaches are applied to the free vibration of cantilevered symmetrically laminated plates with attached mass.First, by applying the experimental modal analysis technique to the cantilevered symmetrically laminated plates with attached mass, thenatural frequencies and mode shapes of the plates are obtained. Next, the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates with attached mass are calculated by Finite Element Method (FEM). Finally, from the experimental andnumerical results, the effect of the moment of inertia of the attached mass to the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates are clarified.
附加质量转动惯量对悬臂对称层合板固有频率的影响
由于层合复合板等复合材料具有高比强度和高结构效率,在许多结构应用中得到了广泛的应用。因此,弄清叠合板的振动特性对叠合板的设计和结构分析具有十分重要的意义。特别是具有附加质量的层合板的振动特性是至关重要的。然而,对于有质量的层合板的自由振动,我们还没有找到理论或实验的方法。本文采用实验和数值方法研究了悬臂对称层合板的自由振动问题。首先,将实验模态分析技术应用于具有附加质量的悬臂对称层合板,得到了层合板的固有频率和模态振型。其次,采用有限元法计算了悬臂对称层合板的固有频率和模态振型。最后,通过实验和数值结果,阐明了附着质量的转动惯量对悬臂对称层合板固有频率和振型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信