A comparison between features for a residential security prototype based on speaker identification with a model of artificial neural network

A. Adami, G.B. Lazzarotto, E.F. Foppa, D.A. Couto Barone
{"title":"A comparison between features for a residential security prototype based on speaker identification with a model of artificial neural network","authors":"A. Adami, G.B. Lazzarotto, E.F. Foppa, D.A. Couto Barone","doi":"10.1109/ICCIMA.1999.798497","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation of a security system for elevators using speaker identification. The system uses a model of an artificial neural network called a multi-layer perceptron as a classifier. In this work, some features, such as pitch, formants, perceptual linear prediction coefficients, mel-cepstral coefficients and cepstral coefficients, are used to obtain the best results in the classification process.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an implementation of a security system for elevators using speaker identification. The system uses a model of an artificial neural network called a multi-layer perceptron as a classifier. In this work, some features, such as pitch, formants, perceptual linear prediction coefficients, mel-cepstral coefficients and cepstral coefficients, are used to obtain the best results in the classification process.
基于人工神经网络模型的说话人识别住宅安防原型特征比较
本文介绍了一种基于扬声器识别的电梯安全系统的实现。该系统使用一种称为多层感知器的人工神经网络模型作为分类器。在这项工作中,利用一些特征,如基音、共振峰、感知线性预测系数、梅尔-倒谱系数和倒谱系数,在分类过程中获得最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信