StruMonoNet: Structure-Aware Monocular 3D Prediction

Zhenpei Yang, Erran L. Li, Qi-Xing Huang
{"title":"StruMonoNet: Structure-Aware Monocular 3D Prediction","authors":"Zhenpei Yang, Erran L. Li, Qi-Xing Huang","doi":"10.1109/CVPR46437.2021.00733","DOIUrl":null,"url":null,"abstract":"Monocular 3D prediction is one of the fundamental problems in 3D vision. Recent deep learning-based approaches have brought us exciting progress on this problem. However, existing approaches have predominantly focused on end-to-end depth and normal predictions, which do not fully utilize the underlying 3D environment’s geometric structures. This paper introduces StruMonoNet, which detects and enforces a planar structure to enhance pixel-wise predictions. StruMonoNet innovates in leveraging a hybrid representation that combines visual feature and a surfel representation for plane prediction. This formulation allows us to combine the power of visual feature learning and the flexibility of geometric representations in incorporating geometric relations. As a result, StruMonoNet can detect relations between planes such as adjacent planes, perpendicular planes, and parallel planes, all of which are beneficial for dense 3D prediction. Experimental results show that StruMonoNet considerably outperforms state-of-the-art approaches on NYUv2 and ScanNet.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.00733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Monocular 3D prediction is one of the fundamental problems in 3D vision. Recent deep learning-based approaches have brought us exciting progress on this problem. However, existing approaches have predominantly focused on end-to-end depth and normal predictions, which do not fully utilize the underlying 3D environment’s geometric structures. This paper introduces StruMonoNet, which detects and enforces a planar structure to enhance pixel-wise predictions. StruMonoNet innovates in leveraging a hybrid representation that combines visual feature and a surfel representation for plane prediction. This formulation allows us to combine the power of visual feature learning and the flexibility of geometric representations in incorporating geometric relations. As a result, StruMonoNet can detect relations between planes such as adjacent planes, perpendicular planes, and parallel planes, all of which are beneficial for dense 3D prediction. Experimental results show that StruMonoNet considerably outperforms state-of-the-art approaches on NYUv2 and ScanNet.
StruMonoNet:结构感知单目3D预测
单目三维预测是三维视觉的基本问题之一。最近基于深度学习的方法在这个问题上给我们带来了令人兴奋的进展。然而,现有的方法主要集中在端到端深度和正常预测上,这并没有充分利用底层3D环境的几何结构。本文介绍了StruMonoNet,它检测和执行平面结构来增强逐像素预测。StruMonoNet在利用混合表示方面进行了创新,该表示将视觉特征和冲浪表示相结合,用于平面预测。这个公式使我们能够结合视觉特征学习的力量和几何表示的灵活性来结合几何关系。因此,StruMonoNet可以检测平面之间的关系,例如相邻平面,垂直平面和平行平面,这些都有利于密集的3D预测。实验结果表明,StruMonoNet在NYUv2和ScanNet上的性能明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信