Recurrent interval type-2 neuro-fuzzy control of an electro hydraulic servo system

M. A. Khanesar, O. Kaynak
{"title":"Recurrent interval type-2 neuro-fuzzy control of an electro hydraulic servo system","authors":"M. A. Khanesar, O. Kaynak","doi":"10.1109/AMC.2016.7496414","DOIUrl":null,"url":null,"abstract":"This paper presents a recurrent interval type-2 neuro-fuzzy controller which benefits from a sliding mode theory-based training algorithm. The recurrent interval type-2 neuro-fuzzy benefits from recurrent type-2 membership functions with interval variances which are trained by a novel training method. Furthermore, the adaptation laws considered for the parameters of the controller benefit from an adaptive learning rate. The stability of the proposed training method is considered using an appropriate Lyapunov function. The proposed method is simulated on an electro hydraulic servo system. The results of simulations show that the proposed method can control the system with a satisfactory performance.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a recurrent interval type-2 neuro-fuzzy controller which benefits from a sliding mode theory-based training algorithm. The recurrent interval type-2 neuro-fuzzy benefits from recurrent type-2 membership functions with interval variances which are trained by a novel training method. Furthermore, the adaptation laws considered for the parameters of the controller benefit from an adaptive learning rate. The stability of the proposed training method is considered using an appropriate Lyapunov function. The proposed method is simulated on an electro hydraulic servo system. The results of simulations show that the proposed method can control the system with a satisfactory performance.
电液伺服系统的循环区间2型神经模糊控制
本文提出了一种基于滑模理论的训练算法的循环区间2型神经模糊控制器。利用一种新颖的训练方法训练出具有区间方差的递归2型隶属函数,从而得到递归区间2型神经模糊。此外,对控制器参数所考虑的自适应律得益于自适应学习率。使用适当的李雅普诺夫函数来考虑所提出的训练方法的稳定性。在电液伺服系统上进行了仿真。仿真结果表明,所提出的控制方法能够达到满意的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信