CNN-Based Tropical Cyclone Track Forecasting from Satellite Infrared Images

Chong Wang, Qing Xu, Xiaofeng Li, Yongcun Cheng
{"title":"CNN-Based Tropical Cyclone Track Forecasting from Satellite Infrared Images","authors":"Chong Wang, Qing Xu, Xiaofeng Li, Yongcun Cheng","doi":"10.1109/IGARSS39084.2020.9324408","DOIUrl":null,"url":null,"abstract":"In this study, a deep convolutional neural network (CNN) was developed to forecast the movement direction of tropical cyclones (or typhoons) over the Northwestern Pacific basin from Himawari-8 (H-8) satellite images. 2250 infrared images which captured 97 typhoon cases between 2015 and 2018 were used to train the CNN model. By using images from Channels 13 and 15 as input into the CNN model, the mean error of the typhoon movement angle reaches up to 27.8°, which shows the great potential of deep learning in tropical cyclone track prediction.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, a deep convolutional neural network (CNN) was developed to forecast the movement direction of tropical cyclones (or typhoons) over the Northwestern Pacific basin from Himawari-8 (H-8) satellite images. 2250 infrared images which captured 97 typhoon cases between 2015 and 2018 were used to train the CNN model. By using images from Channels 13 and 15 as input into the CNN model, the mean error of the typhoon movement angle reaches up to 27.8°, which shows the great potential of deep learning in tropical cyclone track prediction.
基于cnn的热带气旋轨道卫星红外图像预报
在这项研究中,利用Himawari-8 (H-8)卫星图像,开发了一个深度卷积神经网络(CNN)来预测西北太平洋盆地热带气旋(或台风)的运动方向。在2015年至2018年期间捕获了97个台风案例的2250张红外图像用于训练CNN模型。将13频道和15频道的图像输入到CNN模型中,台风运动角的平均误差达到27.8°,显示了深度学习在热带气旋路径预测中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信