A novel privacy-preserving distributed anomaly detection method

Chunkai Zhang, Haodong Liu, Ye Li, Ao Yin, Z. L. Jiang, Qing Liao, Xuan Wang
{"title":"A novel privacy-preserving distributed anomaly detection method","authors":"Chunkai Zhang, Haodong Liu, Ye Li, Ao Yin, Z. L. Jiang, Qing Liao, Xuan Wang","doi":"10.1109/SPAC.2017.8304323","DOIUrl":null,"url":null,"abstract":"Anomaly detection refers to the algorithm to find the anomalies among the data. As a branch of data mining, it has important research significance. With the advance of sensor technology, data is always distributed at many places. To ensure that the data owners privacy data is not disclosed in the process of anomaly detection, the privacy preserving scheme is necessary. In this paper, we propose a provable secure structure, Secure Isolation Forest(SIF), which is a distributed anomaly detection algorithm based on ensemble isolation principle. We improve performance and detection capabilities by fixed the height of trees and adopt an effective homomorphic cryptosystem. Our construction allows the inputs encrypted by different independent public keys. Lastly, we highlight the practicability of our construction by extensive experimental evaluation.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Anomaly detection refers to the algorithm to find the anomalies among the data. As a branch of data mining, it has important research significance. With the advance of sensor technology, data is always distributed at many places. To ensure that the data owners privacy data is not disclosed in the process of anomaly detection, the privacy preserving scheme is necessary. In this paper, we propose a provable secure structure, Secure Isolation Forest(SIF), which is a distributed anomaly detection algorithm based on ensemble isolation principle. We improve performance and detection capabilities by fixed the height of trees and adopt an effective homomorphic cryptosystem. Our construction allows the inputs encrypted by different independent public keys. Lastly, we highlight the practicability of our construction by extensive experimental evaluation.
一种新的保护隐私的分布式异常检测方法
异常检测是指在数据中发现异常的算法。作为数据挖掘的一个分支,它具有重要的研究意义。随着传感器技术的发展,数据总是分布在许多地方。为了保证数据所有者的隐私数据在异常检测过程中不被泄露,需要采用隐私保护方案。本文提出了一种可证明的安全结构——安全隔离森林(SIF),它是一种基于集成隔离原理的分布式异常检测算法。我们通过固定树的高度和采用有效的同态密码系统来提高性能和检测能力。我们的构造允许使用不同的独立公钥加密输入。最后,我们通过大量的实验评估来强调我们构建的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信