A Multi-Target Speaker Detection and Identification System Based on Combination of PLDA and DNN

N. Jakovljević, Tijana Delic, Simona V. Etinski, D. Mišković, T. Lončar-Turukalo
{"title":"A Multi-Target Speaker Detection and Identification System Based on Combination of PLDA and DNN","authors":"N. Jakovljević, Tijana Delic, Simona V. Etinski, D. Mišković, T. Lončar-Turukalo","doi":"10.1109/TELFOR.2018.8612052","DOIUrl":null,"url":null,"abstract":"The paper describes a multi-target speaker detection and identification system based on a fusion of probabilistic linear discriminant analysis (PLDA) and deep neural network (DNN). PLDA is the state-of-the-art approach used in speaker recognition, thus we selected it as our baseline. We tried to develop a DNN based approach, that would be more accurate than the baseline, but only better discrimination between blacklist and background speakers was achieved. The fusion of PLDA and DNN improved performance of the baseline system.","PeriodicalId":229131,"journal":{"name":"2018 26th Telecommunications Forum (TELFOR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2018.8612052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper describes a multi-target speaker detection and identification system based on a fusion of probabilistic linear discriminant analysis (PLDA) and deep neural network (DNN). PLDA is the state-of-the-art approach used in speaker recognition, thus we selected it as our baseline. We tried to develop a DNN based approach, that would be more accurate than the baseline, but only better discrimination between blacklist and background speakers was achieved. The fusion of PLDA and DNN improved performance of the baseline system.
基于PLDA和深度神经网络的多目标说话人检测与识别系统
介绍了一种融合概率线性判别分析(PLDA)和深度神经网络(DNN)的多目标说话人检测与识别系统。PLDA是最先进的说话人识别方法,因此我们选择它作为我们的基线。我们试图开发一种基于深度神经网络的方法,这将比基线更准确,但只能更好地区分黑名单和背景发言人。PLDA和DNN的融合提高了基线系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信